
DISS. ETH NO. 19001

Zero-Copy Network Communication:

An Applicability Study of iWARP beyond Micro Benchmarks

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

PHILIP WERNER FREY

MSc ETH CS, ETH Zurich

born January 4, 1981

citizen of

Zurich, Switzerland

accepted on the recommendation of

Prof. Dr. Gustavo Alonso, examiner
Prof. Dr. Timothy Roscoe, co-examiner
Dr. Bernard Metzler, co-examiner
Prof. Dr. Dejan Kostic, co-examiner

2010

Abstract

Technology trends suggest that the fastest networks will continue to provide link
bandwidths close to the memory and I/O subsystem limits. Because of these trends
and the inevitable overhead in the TCP/IP stack implementations, an increasing
share of a host’s capacity is dedicated to pure network I/O and therefore unavail-
able to application processing. In this thesis, we assess the benefit of applying Re-
mote Direct Memory Access (RDMA) as a means to mitigate the shortcomings of
TCP/IP-based communication on high-performance interconnects. With RDMA,
data is placed directly in the application memory of a remote computer. In bypass-
ing the operating system and eliminating intermediate copying, RDMA promises
to reduce the host overhead of large data transfers significantly, thereby making
it attractive for implementing distributed applications. In a nutshell, RDMA over
Ethernet (also known as iWARP) is a TCP/IP offload engine plus direct memory
access from the network interface card to the application memory.

In the first part of this thesis, we analyze why offloading the TCP stack to the
network adapter alone is not sufficient for significant host overhead reduction—a
zero-copy mechanism, like the one offered by iWARP/RDMA is required. We do
not discuss how to implement iWARP/RDMA as this has been done by many
researchers and the industry. Rather, the objective is to assess its benefits and
implications with regard not only to user applications but also to the whole oper-
ating system which has not been done yet. To that end, we perform a thorough
study and identify the hidden costs of iWARP/RDMA in terms of performance as
well as programming- and protocol design complexity. Finally, we provide a set of
optimizations without which RDMA loses all its advantages.

The goal of the second part is to show by example how applications can leverage
the potential of iWARP/RDMA when adhering to the conditions and optimiza-
tions presented in the fist part of the thesis. We demonstrate the performance ad-
vantages in different application domains like high-definition media dissemination
or distributed databases. Thanks to the host overhead elimination, we achieve
unprecedented performance. Finally, we illustrate the inevitable programming-
and protocol complexity, due to the new interface and semantics, by enhancing
a legacy sockets-based application with the RDMA abstraction and provide an
assessment of when such a complex transformation is worthwhile.

iii

Kurzfassung

Die Datenraten moderner Computer Netzwerke bewegen sich oft im oberen Bere-
ich der Arbeitsspeicher- und I/O Subsystem Geschwindigkeiten, wie Technologi-
etrends wiederholt gezeigt haben. Dies führt dazu, dass ein Grossteil der Rechenka-
pazität für den Datentransfer (innerhalb des Computers) aufgewendet werden muss
und somit nicht mehr für andere Anwendungen zur Verfügung steht. In dieser Ab-
handlung soll untersucht werden, ob und in wie weit es uns Remote Direct Memory
Access (RDMA) erlaubt, modernste Netzwerke zu nutzen ohne die kommunizieren-
den Computer mit dem Datentransfer zu belasten. Einfach gesagt, ermöglicht
RDMA den direkten Zugriff über ein Netzwerk auf entfernten Arbeitsspeicher.
Die Kernideen sind dabei das Umgehen des Betriebssystems sowie das Vermeiden
von unnötigen Datenkopien im Netzwerkstack des Computers. Dadurch wird die
Kommunikation wesentlich effizienter und interessant für verteilte Anwendungen.

Im Folgenden beschäftigen wir uns vor allem mit iWARP, einer Implemen-
tierung von RDMA über Ethernet. Im ersten Teil der Abhandlung untersuchen
wir, warum es nicht genügt den TCP/IP Stack auf den Netzwerkadapter auszu-
lagern und warum das Vermeiden der Kopieroperationen essentiell ist. Unser Ziel
ist es, den Nutzen und die Implikationen von RDMA in Bezug auf die Anwendun-
gen und das Betriebssystem zu verstehen und nicht eine RDMA Implementation
zu beschreiben. Zu dem Zweck werten wir eine Reihe von Testergebnissen aus,
die Aufschluss geben über die zu erwartende Leistungssteigerung aber auch ver-
steckte Kosten von RDMA und die Komplexität solch neuer Systeme. Um den
Leistungsvorteil von RDMA zu maximieren, schlagen wir anschliessend eine Reihe
von Optimierungen vor.

Das Ziel des zweiten Teiles ist es, an Hand von konkreten Beispielen zu zeigen,
wie unterschiedliche Anwendungen das Potential von RDMA zu ihren Gunsten
nutzen können. Wir demonstrieren die Vorteile am Beispiel der Verbreitung von
High-Definition Video an viele Zuschauer sowie von grossen verteilten Daten-
banken. Wir zeigen, dass durch die Eliminierung unnötiger Arbeit auf den kom-
munizierenden Computern, die Anwendungen direkt von der performanten Net-
zwerk Infrastruktur profitieren können. Zu guter Letzt schreiben wir eine ex-
istierende, Sockets-basierte Anwendung für RDMA um und erörtern, unter welchen
Umständen so eine Transformation sinnvoll ist.

v

Acknowledgements

I would like to express my gratitude to the people who have supported me during
the course of this work.

First, I would like to thank the people at IBM Research-Zurich. Above all, I
owe many thanks to Bernard Metzler who has provided me with a lot of invaluable
conceptual as well as technical help. Many thanks for all the fruitful and humor-
ous discussions! Moreover, I need to thank Andreas Hasler for all the hours he
spent towards the successful completion of the high-definition media dissemination
project. Many thanks also go to Charlotte Bolliger for proof-reading my papers
and to Fredy Neeser for the introductory assistance to the RDMA subject. Last
but not least, I want to express my gratitude to Patrick Droz for providing me
with all the necessary resources and management support. Many thanks also go
to Felix Marti from Chelsio Corporation for providing me with insights on the
RDMA-enabled network adapters.

I am equally grateful for all the support I received from the Systems Group
at ETH Zurich. First and foremost, I owe many thanks to my advisor, Gustavo
Alonso, who supervised the whole work, kept challenging my endeavors and pro-
vided me with a lot of well-appreciated guidance. Furthermore, I am thankful for
the challenging questions and helpful advice from my co-advisor Timothy Roscoe.
Special thanks also go to Jens Teubner as well as Romulo Goncalves and Martin
Kersten for the fruitful collaboration on the Data Roundabout project. Finally,
I am deeply grateful to Rene Mueller, Michael Duller, Adrian Schuepbach, Jan
Rellermeyer, Akhilesh Singhania, Thomas Heinis and Nico Schottelius for the nu-
merous technical discussions and joyful company.

vii

Contents

Abstract iii

Kurzfassung v

Acknowledgements vii

1 Introduction 1
1.1 Motivation - Network Communication Revisited 1
1.2 Problem Statement . 3
1.3 Contributions of this Thesis . 3
1.4 Overview of this Thesis . 5

I iWARP/RDMA Communication Principles 7

2 RDMA Background 9
2.1 TCP Sockets . 9

2.1.1 CPU Overhead . 11
2.1.2 Memory Bus Traffic . 12
2.1.3 Context Switches . 12

2.2 Reducing the Communication Overhead 14
2.2.1 Offloading the TCP Stack is not Enough 14
2.2.2 The RDMA Idea . 15

2.3 Related Work . 18
2.3.1 TCP/IP Optimizations . 18
2.3.2 User Level Networking . 20
2.3.3 The Virtual Interface Architecture 23
2.3.4 iWARP/RDMA Applicability 29

3 iWARP: RDMA over Ethernet 37
3.1 The Protocol Stack . 38

3.1.1 Protocol Analyzer Extension 41

ix

x CONTENTS

3.1.2 Security Considerations . 45

3.2 Host System Integration . 45

3.2.1 The OpenFabrics Software Stack 45

3.2.2 Softiwarp: iWARP Communication without an RNIC 47

3.3 Consumer Interfaces . 51

3.3.1 RDMA Verbs . 51

3.3.2 OFED API . 57

3.3.3 iWARP Library . 60

3.3.4 The File Abstraction - An Alternative Interface 65

3.4 iWARP in Action . 69

3.4.1 The “Hello iWARP” Application 69

3.4.2 Micro Benchmarks . 72

3.5 Summary . 78

3.6 Outlook . 79

4 The Hidden Cost of iWARP/RDMA 81

4.1 Introduction . 81

4.1.1 Problem Statement . 82

4.1.2 Contributions . 83

4.1.3 Chapter Overview . 83

4.2 RDMA Background . 83

4.2.1 Asynchronous Communication Interface 83

4.2.2 RDMA Data Transfer Operations 84

4.2.3 Explicit Buffer Management 84

4.3 iWARP/RDMA Cost Analysis . 85

4.3.1 RDMA Setup . 87

4.3.2 Memory Region (De-)Registration 88

4.3.3 Memory Copying . 93

4.4 Optimization Strategies . 94

4.4.1 Respect the Critical Buffer Size 94

4.4.2 Overlap Buffer Management with Communication 96

4.4.3 Register Buffer on Resident Pages 96

4.4.4 Parallel Buffer Registration and Applicability 97

4.4.5 Suitability of the Optimizations 97

4.5 When is iWARP/RDMA beneficial? 98

4.5.1 Critical Parameters . 99

4.6 Summary . 101

4.7 Outlook . 101

CONTENTS xi

II Enabling Applications for iWARP/RDMA 103

5 Distributed Compilation Revisited 105
5.1 Introduction . 105

5.1.1 Contributions . 106
5.1.2 Chapter Overview . 107

5.2 Background . 107
5.2.1 distcc Overview . 107
5.2.2 Relevant Aspects of RDMA 108

5.3 Extending distcc with iWARP/RDMA Capabilities 113
5.3.1 How can distcc profit from RDMA? 113
5.3.2 RDMA Support in Practice 114
5.3.3 Making Files RDMA-accessible 115
5.3.4 rdistcc’s RDMA Memory Region Management 117
5.3.5 Transferring the Files using iWARP 119
5.3.6 Connection Management . 120
5.3.7 Application Protocol for iWARP 121

5.4 Experimental Evaluation . 123
5.4.1 Data Residing on Memory versus Hard Disk Drive 123
5.4.2 TCP versus RDMA . 124
5.4.3 Dedicating a Core to RDMA Stack Processing 125
5.4.4 Who Would Need an RDMA-enabled NIC? 125
5.4.5 Conclusion . 126

5.5 RDMA File Access - Further Considerations 126
5.6 Related Work . 127
5.7 Summary . 127
5.8 Outlook . 128

6 Server-Efficient HD Media Dissemination 129
6.1 Introduction . 129

6.1.1 Challenges . 130
6.1.2 Problem Statement . 131
6.1.3 Contributions . 131
6.1.4 Chapter Overview . 131

6.2 Background . 132
6.2.1 RDMA Benefits . 132
6.2.2 Prevalent VoD Transports 133

6.3 Assessment of Current Systems . 134
6.3.1 Experimental Setup . 135
6.3.2 RTP-based Systems . 136
6.3.3 HTTP-based Systems . 138

xii CONTENTS

6.4 Server-Efficient Media Dissemination with iWARP 144
6.4.1 iWARP/RDMA-based VoD Protocol 144
6.4.2 Protocol Performance Evaluation 147
6.4.3 In-Band VCR-like Media Control 149
6.4.4 Live Streaming as a Special Case of VoD 150

6.5 Discussion . 151
6.6 Related Work . 152
6.7 Summary . 153
6.8 Outlook . 154

7 The Data Roundabout 155
7.1 Introduction . 155

7.1.1 State of the Art . 156
7.1.2 Problem Statement . 157
7.1.3 Contributions . 157
7.1.4 Chapter Overview . 158

7.2 Background . 158
7.2.1 Processing Large Joins in Distributed Main Memory 158
7.2.2 RDMA Benefits for Distributed Databases 163

7.3 The Data Roundabout Transport 164
7.3.1 Considerations for Applying RDMA 165
7.3.2 The Data Roundabout Design on RDMA 166
7.3.3 Data Roundabout Performance Characteristics 169

7.4 Join Processing on the Data Roundabout 172
7.4.1 Problem Scenario . 172
7.4.2 The Join Operation . 173
7.4.3 A Selection of Join Algorithms 173
7.4.4 Interacting with the Revolving Join 176

7.5 Experimental Assessment of the Revolving Joins 176
7.5.1 Distributing the Join Evaluation 176
7.5.2 Large In-Memory Join . 181
7.5.3 Sort-Merge Join: Setup Cost vs. Join Cost 182

7.6 Is RDMA Beneficial At All? . 185
7.6.1 Data Roundabout Characteristics Summary 187
7.6.2 Going Really Large - An Outlook. 188

7.7 Related Work . 188
7.8 Summary . 190

8 Conclusion 191

Curriculum Vitae 219

1
Introduction

We start this thesis by giving the motivation for the work at hand, followed by a
summary of the contributions and a brief overview of the content of the subsequent
chapters.

1.1 Motivation - Network Communication Re-

visited

Following “Moore’s Law”, computing power per machine doubles every two years
on average. However, network technology performance has recently grown at a
much faster pace (e.g., Ethernet technology has evolved from 100 Mb/s to 10 Gb/s
in a much shorter time frame). Technology trends suggest that the fastest networks
will continue to provide link bandwidths close to the memory and I/O subsystem
limits on most hosts. Because of this trend and the unavoidable overhead in com-
mon TCP/IP stack implementations such as application data copying, context
switches and protocol processing, an increasing share of a host’s processing power
is dedicated to pure network I/O and therefore unavailable to application process-
ing [CJRS89]. Hence, end systems that use TCP sockets are likely to remain the
bottleneck in high-speed data communication performance in current as well as in
future hardware.

Remote Direct Memory Access (RDMA) is an alternative mechanism to TCP
sockets. With RDMA, data is placed directly in the application memory of a
remote computer [HCPR]. In bypassing the operating system and eliminating

1

2 CHAPTER 1. INTRODUCTION

0%

NIC driver

ctxt switches

& syscalls

TCP/IP

data

copies

Everything on CPU TCP/IP offloaded RDMA + TCP/IP

offloaded

C
P
U
 l
o
a
d

50%

100%

Figure 1.1: CPU load distribution for bulk data transfers across a high-speed
network. At the far left, all tasks are performed by the host CPU. In the middle,
the TCP/IP stack processing is offloaded to the network adapter. On the far right,
the TCP/IP offloading is extended with RDMA capabilities.

intermediate copying across buffers (zero copy), RDMA significantly reduces the
CPU cost of large data transfers as well as the end-to-end latency, thereby making
it very attractive for implementing distributed applications [LWK+03, NCTP07,
KCH+07]. Having the CPU available for computation while receiving and sending
data at a very high rate is important for various applications such as a distributed
real-time analysis of large scientific experiments or high-definition video streaming
to a substantial number of clients. Although the ideas behind RDMA are not
new [Dav91, DWB+93, ST93, DP93, CCC97, CGY01], it has only been with the
constant increase in network bandwidth that they have become a necessity not
only for proprietary high-bandwidth fabrics such as InfiniBand [ibt] but also for
Ethernet based TCP/IP [CJRS89]. Early attempts to reduce the CPU load caused
by high-bandwidth TCP/IP communication, offloaded the entire TCP/IP stack
onto the network interface card (NIC). This proved not to be enough [Mog03].
Today, the approach most favored is a TCP/IP offload engine (TOE) plus direct
memory access (DMA) from the NIC to application memory [RB03, BC02]. In a
nutshell, this is what RDMA over Ethernet [RMTB05] (also known as iWARP)
provides.

The advantages of RDMA over plain TCP/IP offloading can be demonstrated
with a simple experiment [MNF]. Transferring bulk data as fast as possible over a
standard TCP/IP connection reveals a CPU load distribution like the one shown
in Figure 1.1. Most CPU cycles are spent on data copying within the local host
(leftmost chart). Although offloading the TCP/IP stack onto the NIC shows some

1.2. PROBLEM STATEMENT 3

improvement (middle), only the TOE in combination with RDMA reduces the
CPU load significantly by eliminating the data copying (rightmost chart). This is
the reason why RDMA is being looked at with increasing interest as a key design
element of future distributed systems [DW07a,NSL+08,Pak08]. Nevertheless, it is
also facing a lot of criticism [Geo06,MSG04].

1.2 Problem Statement

RDMA usage is nowadays limited to high-performance computing and storage
applications. Its deployment in other application domains is still due. We have
added RDMA support to a number of those applications and were disappointed
to find that the performance benefit was not always significant.

We argue, that a profound investigation is needed in order to gain the necessary
insight and understanding of the technology at hand. Only this will enable us
to rigorously characterize the circumstances under which the benefit of RDMA
becomes substantial. In a second step, we want to show the obtainable benefit by
means of real-world applications which clearly go beyond micro benchmarks.

In essence, we look for an answer to the following question: “What do we gain
with RDMA and which are the ideal circumstances of its deployment?”.

1.3 Contributions of this Thesis

In short, we first identify the sweet spots of iWARP/RDMA through a set of
experiments and ease the application development by providing a more intuitive
consumer interface. Based on that, we then present a number of real-world RDMA
applications which we have built on one hand to confirm our findings and on the
other hand to demonstrate the advantage of iWARP/RDMA for applications out-
side the high-performance computing (HPC) domain. In more detail, the contri-
butions are the following:

� Even though, iWARP/RDMA promises a significant performance potential,
it is not widely deployed today. One reason for that is the complicated and
error prone interface on which the industry has agreed. We hence present a
library with a simpler interface to facilitate iWARP application development.
Nevertheless, we are able to preserve the performance and flexibility of the
original interface. In-depth understanding of the inner workings of RDMA is
hence no longer required. The library code has been returned to the industry
alliance1 where it was well received.

1http://www.openfabrics.org

4 CHAPTER 1. INTRODUCTION

� Another reason for the limited deployment of iWARP is the necessary hard-
ware which is still quite expensive (around $800 per adapter) and which has
only become available on the mass market in late 2007. In order to bridge
the gap between the expensive but powerful iWARP and the ubiquitous but
lower-performance TCP, we have implemented an iWARP/RDMA software
adapter which extends ordinary Ethernet NICs with iWARP capabilities.
This allows for machines, which do not have RDMA hardware installed, to
be integrated into iWARP/RDMA networks. Furthermore, as we will see,
the expensive hardware is not always necessary. Details on our early version,
termed SoftRDMA, are published in:

[NMF10] Fredy Neeser, Bernard Metzler, and Philip W. Frey. SoftRDMA:
Implementing iWARP over TCP kernel sockets. IBM Journal of Research
and Development. Special Issue on Network-Optimized Computing, (2010, in
press).

A more recent version, termed Softiwarp, has been presented at:

[MNF09] Bernard Metzler, Fredy Neeser, and Philip W. Frey. A software
iWARP driver for OpenFabrics. In OpenFabrics Alliance Sonoma Workshop,
2009.

� A third reason for the low acceptance of iWARP/RDMA is the uncertainty
about the performance benefit for a given application. Throughout various
experiments, we have been able to identify the sweet spots of the technology
and, based on our findings, present a metric which allows for a more accurate
assessment of the performance potential at hand. Furthermore, we suggest
a number of application optimizations that can be applied when designing
the explicit memory management as required by RDMA. The original work
is published in:

[FA09] Philip W. Frey and Gustavo Alonso. Minimizing the hidden cost
of RDMA. In Proceedings of the 29th IEEE International Conference on
Distributed Computing Systems, pages 553–560, 2009 (Best-Paper Award).

� Based on the findings mentioned above, we have implemented a number of
real-world applications. First, we have transformed the distributed C/C++
compiler extension distcc from the sockets abstraction to the iWARP/RDMA
interface. While the performance advantage is not substantial, the work de-
scribes the steps required to replace the legacy socket interface with iWARP
and reasons about the various design decisions. Furthermore, a solution is
provided for making files, residing on secondary storage, RDMA-accessible.
The work is published in:

1.4. OVERVIEW OF THIS THESIS 5

[FMN10] Philip W. Frey, Bernard Metzler, and Fredy Neeser. Enabling
applications for RDMA: Distributed compilation revisited. Technical report,
IBM Research RZ3764, January 26, 2010.

� The second application, high-definition multimedia data dissemination, matches
the sweet spot of iWARP/RDMA. We have built an iWARP-capable video
server, which is able to serve the content in real-time to a substantial number
of clients at a negligible CPU load. In this work, we provide a one-on-one
comparison of our solution against HTTP/TCP as well as RTP/UDP and are
able to show the superiority of RDMA. In particular, we highlight the benefits
of the one-sided, asynchronous operations offered by iWARP. Furthermore,
this application serves as an excellent use case for the aforementioned soft-
ware iWARP adapter as we cannot require each client to be equipped with
RDMA hardware. The original work can be found in:

[FHMA09] Philip W. Frey, Andreas Hasler, Bernard Metzler, and Gustavo
Alonso. Server-efficient high-definition media dissemination. In Proceedings
of the 19th International Workshop on Network and Operating System Sup-
port for Digital Audio and Video, pages 49–54, 2009.

� Finally, we have built a novel distributed database architecture which op-
erates on rotating data sets. In particular, our architecture, termed Data
Roundabout, is able to exploit all computing resources at hand offering good
performance and scalability characteristics. Thanks to iWARP/RDMA, we
no longer have to avoid network communication at all cost but can leverage
the potential provided by the communication hardware. This allows us to
spend more CPU cycles on the actual data processing. We show the perfor-
mance benefit through a set of join algorithms implemented on top of the
Data Roundabout. Furthermore, we compare the iWARP results with plain
TCP. The work has been published in the following two places:

[FGKT09] Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens
Teubner. Spinning relations: High-speed networks for distributed join pro-
cessing. In Proceedings of the 5th International Workshop on Data Manage-
ment on New Hardware, pages 27–33, 2009.

[FGKT10] Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens
Teubner. A spinning join that does not get dizzy. In Proceedings of the 30th
IEEE International Conference on Distributed Computing Systems, 2010.

1.4 Overview of this Thesis

The thesis consists of two parts:

6 CHAPTER 1. INTRODUCTION

Part I. The first part starts with background information on TCP and iWARP/RDMA
which is required to follow the argumentation presented subsequently. As part of
the related work, the history of iWARP is outlined (Chapter 2). In Chapter 3,
we look at a real iWARP system in full detail. In particular, we present the re-
quirements for enabling RDMA/iWARP from an operating system (OS) as well
as from a user application perspective. A demonstration of the system in practice
together with a set of initial benchmarks concludes the chapter. Subsequently, in
Chapter 4, we point out the issues with regard to the explicit memory manage-
ment required by RDMA. Also, we suggest a number of optimizations to make
RDMA more efficient with regard to real-world applications. Finally, the critical
parameters for unleashing the full performance potential as well as for assessing
the potential benefit of iWARP are presented.

Part II. In the second part, we present applications which are more than just
micro benchmarks. In Chapter 5, we illustrate the steps necessary to transform
a legacy application from the socket interface to iWARP at the example of the
distributed C/C++ compiler distcc. In particular, we will demonstrate the benefit
of the asynchronous API offered by RDMA. In Chapter 6, we build an RDMA-
based high-definition media dissemination platform that outperforms HTTP/TCP
and RTP/UDP by far not only in terms of serviceable clients but also in terms of
the induced server load. Here, we focus particularly on the one-sided semantics
of the RDMA operations. In Chapter 7, we move on to the database domain
and suggest a novel database architecture based on rotating data sets—the Data
Roundabout. iWARP/RDMA allows us to ship large amounts of data without
incurring any significant cost on the hosts. We thus do not have to avoid network
communication and can use the CPU cycles for the data processing which results
in a most efficient utilization of the resources at hand. Chapter 8 finally concludes
this thesis.

Part I

iWARP/RDMA Communication
Principles

7

2
RDMA Background

The first part of this thesis provides background information required to follow the
techniques and argumentation presented subsequently. Before we introduce and
discuss the Remote Direct Memory Access (RDMA) communication model, we
briefly review the issues encountered when applying the classical socket interface
to high-speed1 interconnects such as 10 Gigabit Ethernet [inta].

2.1 TCP Sockets - The Classical Communication

Interface

The Transmission Control Protocol (TCP) [Pos81,Ste94,Tan02] is one of the uni-
versally accepted transport layer protocols today. In this section, we revise some
of the inner workings of TCP. This is necessary in order to understand why the
socket interface is limited with regard to multi-gigabit interconnects. The TCP/IP
performance issues on high-speed interconnects have been documented by various
researchers [CJRS89,KP93,KP96,FHH+03,BSP04,FBB+05] and we thus restrict
ourselves to the most apparent ones.

The TCP protocol specification [Pos81] dates back to 1981 and has not changed
significantly since then. However, the infrastructure on which the protocol operates
has changed dramatically in the last thirty years. As a consequence, the protocol

1High-speed refers to conditions in which the network bandwidth is high relative to the band-
width of the host memory and CPU.

9

10 CHAPTER 2. RDMA BACKGROUND

Memory

NIC

Socket

Buffer

Application

Buffer

CPU copy

DMA copy

Network

Figure 2.1: Simplified, logical in-host data path for TCP transfers. The data is
intermediately stored in the kernel socket buffer before it is either sent out by the
network interface controller (TX) or copied into the user space buffer (RX).

in its original form does no longer yield the most efficient resource utilization.
Yet, the performance limitations imposed by TCP are not primarily a result of the
network protocol itself. Rather they are a consequence of the in-host data path
imposed by the socket abstraction.

One major problem is the indirect data placement as shown, in a simplified
version, in Figure 2.1. On the transmit path, when the write() operation is issued,
the data is first copied by the CPU from its location in the application buffer (user
space) into a temporary socket buffer (kernel space). Thereafter, the TCP/IP
stack implementation (running in the kernel) puts the data into an appropriate
TCP packet by adding control information such as the ports, sequence numbers,
checksum etc. Finally, the packet is brought to the network interface controller
by a DMA copy. On the receive path, the procedure is the same but in reverse
order. First, the data is DMA’ed from the NIC into the socket buffer from where
it is then copied by the CPU into the application address space. The last step is
triggered by the application issuing a read() command.

Already in this simplified illustration, the overhead caused by the intermediate
copying through kernel space is apparent. As we will show in a moment, this
copying causes an even larger overhead in reality. With network bandwidth still
increasing exponentially, shipping data using TCP/IP over recent high-speed inter-
connects (i.e., 10 Gigabit Ethernet and newer) induces a non-negligible overhead
on the end-hosts mainly due to the intermediate copying described above which
results in a reduction of the available compute resources. As a consequence, the
applications running on the end-hosts are not able to realize the full potential of
the underlying network infrastructure.

In the following, we demonstrate the problems of socket-based communication
by means of a simple experiment: we transfer bulk data as fast as possible over

2.1. TCP SOCKETS 11

a standard TCP/IP connection. Our setup for that consists of two HS21 IBM
BladeServers. Each of them is equipped with a quad core Intel Xeon CPU running
at 2.33 GHz, 32 KB L1 data cache and 32 KB L1 instruction cache, 4 MB unified
L2 cache and 8 GB of main memory.

2.1.1 CPU Overhead

First, we demonstrate the implications, with regard to the CPU, when transferring
data at a bandwidth of 1 Gbps and compare the result with 10 Gbps. To that
end, we exchange random bulk data over the network using increasing buffer sizes
from 1 B to 1 GB. Figure 2.2 reveals the following:

� The network link can be saturated with moderate CPU load for 1 Gbps
(Figure 2.2(a)).

� For the 10 Gbps link, this is no longer true (Figure 2.2(b)). The receive-side
CPUs are running under full load but the link can still not be fully utilized.
There are virtually no CPU cycles left for application processing.

� The receive side (RX) induces more CPU load than the transmit side (TX)
in both cases.

� The achieved throughput generally depends on the message size. For the
1 Gbps link this means larger is better. For the 10 Gbps case, the cache
sizes have to be taken into account. There, the throughput also depends on
whether the data fits into L1 cache (32 KB in our case), L2 cache (4 MB) or
none of them.

Our analysis on how the CPU cycles are spent confirm earlier findings [FHH+03]:
most of the cycles are spent on data touching operations such as copying and
checksum calculation given that the messages are sufficiently large (Figure 2.2(c)).
Further CPU cycles are spent on the TCP/IP stack processing, on system calls
and context switches as well as on the NIC driver itself. We are thus bound by
the per-byte cost. For small messages, on the other hand, we are bound by the
per-packet cost and the protocol processing dominates. For more details, refer
to [KP93] and [FHH+03].

An early, generally accepted rule of thumb states that about 1 Hz of CPU
power is required for utilizing 1 bps of the network link. However, the CPU speeds
have been increasing faster than the memory bus speeds which causes the CPU to
spend more time waiting for the memory bus [CGY01]. As these waiting times are
often too short for a context switch, the CPU cycles are essentially lost causing a
shift in the above rule of thumb meaning that with recent architectures, 1 bps on

12 CHAPTER 2. RDMA BACKGROUND

the network requires even more than 1 Hz of CPU power. Assuming a 10 Gbps
interconnect, at least 10 GHz of CPU power would hence be required to utilize the
link.

Furthermore, we see a trend in the evolution of processors away from increas-
ingly faster single cores towards multiple cores per machine, today. Unfortunately,
this does not solve the TCP/IP overhead problem because the network stack pro-
cessing can not be parallelized easily [NBF07]. In addition to that, the CPU is
not the only bottleneck as we will illustrate in the next section.

2.1.2 Memory Bus Traffic

A second, less apparent but equally important problem of the socket abstraction is
the high memory bus traffic caused by the intermediate copying [FHH+03,BSP04,
RB03].

While Figure 2.1 has shown a simplified version of the actual data path, Fig-
ure 2.3 shows a more complete picture for outbound data.2 Looking closely at the
data path on the transmit side, we find that the following steps are performed:

1. CPU reads data from the application buffer.

2. CPU writes the data to the socket buffer.

3. NIC performs a DMA read from the socket buffer.

In practice, this means that for every byte we transfer over the network,
2-4 bytes cross the memory bus (depending on whether the data fits into the
cache [FHH+03]). In order to perform a data transfer over the network at 10 Gbps
we hence require a memory bus that can sustain up to 40 Gbps (or even 80 Gbps
if we communicate in full-duplex mode). This does not yet include normal mem-
ory bus traffic unrelated to the network transfers. The issue is aggravated when
moving to higher bandwidths, for instance, by using multiple NICs per node in
parallel [PMB09].

It should now be evident that increasing the CPU speed or adding more
CPUs to the system is not enough to be able to sustain the increasing, aggregate
throughput—only the elimination of the unnecessary copy operations is [Mar02].

2.1.3 Context Switches

In addition to the CPU load and memory bus traffic caused by the TCP stack
processing and data copy operations, the socket-based communication also causes

2The receive path is essentially the same but in reverse order.

2.1. TCP SOCKETS 13

0

200

400

600

800

1000

1B 1KB 1MB 1GB

Buffer Size

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 L

o
a
d

 [
%

]

Throughput CPU TX CPU RX

(a) TCP bulk data transfer on 1 Gbps Ethernet.

0

2000

4000

6000

8000

10000

1B 1KB 1MB 1GB

Buffer Size

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 L

o
a

d
 [

%
]

Throughput CPU TX CPU RX

32KB 4MB

(b) TCP bulk data transfer on 10 Gbps Ethernet.

free for application

NIC driver

data touching

TCP/IP stack

ctxt switches

(c) CPU load distribution for large messages on 10 Gbps.

Figure 2.2: In-kernel TCP is able to fully saturate the 1 Gbps network link but
not the 10 Gbps one due to its expensive in-host data path.

14 CHAPTER 2. RDMA BACKGROUND

FSB MEM

PCI

L2 Cache

I/O

Controller

Memory

NIC

Cached

Socket Buffer
Socket

Buffer

Application

Buffer

Cached

App. Buffer

Memory

Controller

1

2

3

C
P
U

FSB
MEM
PCI

Front Side Bus
Memory Bus
Peripheral Component Interconnect

-
-
-

Figure 2.3: Full in-host transmit data path for socket-based data transfers. The
same data crosses the memory bus several times.

a large number of context switches when running at the aforementioned, high data
rates. Context switches do not only interrupt the currently running task but also
cause cache-pollution which can result in a non-negligible slowdown of the whole
system [MB91].

The frequent context switches are mainly due to interrupts raised by the NIC
to signal updates in the data propagation. This is particularly problematic at the
receive side as the NIC raises a lot of interrupts in order to notify the kernel about
new inbound data being present. In Chapter 6, we will present an example which
shows the negative impact of the high context switch rate in practice.

2.2 Reducing the Communication Overhead

In the previous section, we have identified the major cost factors for TCP data
transfers over high-speed Ethernet as being the high CPU load and memory bus
traffic. The overhead is caused not only by the intermediate data copies and the
protocol processing but also by the numerous context switches and interrupts. In
the following, we discuss proposed solutions to reduce this overhead.

2.2.1 Offloading the TCP Stack is not Enough

Traditionally, the TCP/IP protocol stack is implemented as part of the operating
system (OS) kernel which implies that it runs on the host CPU(s). As we have

2.2. REDUCING THE COMMUNICATION OVERHEAD 15

discussed in the preceding section, processing the stack requires a non-negligible
share of CPU cycles when handling large data throughput as seen in high-speed
networks.

In order to reduce the load on the CPU, researchers have proposed to offload
(some of) the TCP stack processing to the NIC. Early implementations have fo-
cused on offloading only the compute-intensive parts, such as the checksum calcu-
lation. With the ongoing bandwidth increase, eventually the whole stack including
all protocol layers below TCP were offloaded to specialized NICs, called TCP Of-
fload Engines (TOE).

Even though the TOE approach sounds promising and is able to outperform in-
kernel TCP/IP [FBB+05], it has never been widely adopted. The reason for this is
two-fold [Mog03]: first, there are still fundamental performance issues. A TOE can
reduce the unnecessary intermediate copies (which are responsible for the majority
of the CPU cost) but is not able to fully eliminate them. Furthermore, it fails at
significantly reducing the context switch rate. Second, its deployment in practice
proved to be more complex than anticipated for a number of reasons [Mog03].

2.2.2 The RDMA Idea

The TCP offloading approach illustrated above operates on the socket abstraction
and thus cannot avoid the intermediate copying through the kernel socket buffer.
Remote Direct Memory Access (RDMA), on the other hand, introduces a radically
different interface (discussed in detail in Section 3) which allows a system to place
the communicated data directly into its final memory location (in user space)
without any additional or intermediate data copies through kernel space. This
zero-copy or direct data placement capability provides the most efficient network
communication possible. An RDMA-enabled network interface controller (RNIC)
provides a hardware accelerated RDMA-ed network stack instance in addition to
the conventional network stack in the operating system.

RDMA, thus, enables transferring data from the memory of one host directly
into the memory of another with minimal involvement of the CPUs in the transfer
and thereby essentially extends the well-known local DMA model with network
capabilities.

Figure 2.4 illustrates the basic idea at the example of a single data transfer:
first, the CPUs program their RNICs with the necessary data placement infor-
mation which consists of the memory addresses, the length of the data to be
exchanged as well as an ID which uniquely identifies the buffer (called Steering
Tag, or STag). Second, the sending RNIC fetches the data (without involvement
of the OS kernel) from the local application source buffer using DMA and moves
the data across the network to the receiving RNIC which places the inbound data
directly into its final location at the destination buffer of the application. Finally,

16 CHAPTER 2. RDMA BACKGROUND

MemoryMemory

Network

DMA DMA

1
4

1
4

2 3

CPU

RNIC

Application

Buffer

CPU

RNIC

Application

Buffer

Figure 2.4: A data transfer using RDMA-enabled NICs.

the RNICs notify their CPUs when the data transfer has completed. Note that
there is no intermediate buffering of the data in kernel space on either side

In order to fully bypass the OS and to avoid temporary buffering and associated
memory bus transfers (as it is done in sockets), the RDMA programming interface
requires applications to explicitly manage their communication buffers. Using
RDMA’s clear communication buffer ownership rules, the application temporarily
passes control over its buffers to the RNIC for direct data placement. This allows
for a true zero-copy data transfer while avoiding all in-host copy operations. Only
such zero-copy architectures can deliver the entire available network bandwidth up
to the application without causing heavy local traffic on the memory bus and CPU
as the link speed of the interconnect technologies available today (i.e., 10 Gigabit
Ethernet [inta]) have caught up with the memory bandwidth available in modern
architectures. While initially based on proprietary network technologies such as
InfiniBand, the advent of TCP/IP-based RDMA, called iWARP [RB03,RMTB05]
(see Chapter 3), and the standardization of RDMA APIs make RDMA suitable
for legacy applications.

With iWARP/RDMA, we hence have a suitable communication mechanism
that allows us to fully utilize the high-speed interconnect while inducing only a
minimal overhead on the end-hosts (illustrated in Figure 2.5). This is mainly
attributed to the avoidance of intermediate copies thanks to the direct data place-
ment and OS bypassing capabilities which not only require almost no CPU cycles
during data transfers but also significantly reduce the memory bus traffic. As
most systems, also RDMA is by no means perfect. We will carefully examine its
practical limitations in Chapter 4.

In the following, we are going to discuss related research projects focusing on
host-efficient network communication before we discuss in detail how RDMA can
be enabled on the ubiquitous Ethernet using the iWARP protocol stack and il-
lustrate the application programming interface offered by iWARP/RDMA (Chap-

2.2. REDUCING THE COMMUNICATION OVERHEAD 17

sender receiver

RAM NIC

CPU

NIC RAM

CPU

underutilized

network

(a) CPU-driven, host-local data copying induces an overhead which prevents the hosts from fully
utilizing the available link bandwidth.

sender receiver

RAM RNIC

CPU

RNIC RAM

CPU

fully utilized

network

(b) Thanks to the direct data placement mechanism provided by RDMA-enabled NICs (RNIC), the
network can be fully utilized with minimal overhead on the end-hosts.

Figure 2.5: Avoiding host-local overheads like intermediate copying is key to fully
leverage the bandwidth provided by high-speed networks.

18 CHAPTER 2. RDMA BACKGROUND

ter 3).

2.3 Related Work

This section presents work related to network optimizations in general and RDMA
in particular. We start with a selection of interesting, early approaches which aim
at reducing network communication overhead in general and the cost of TCP in
particular. Among others, they have led to what is known today as the Virtual
Interface Architecture (VIA), a specification describing user level access to network
resources. InfiniBand is an early implementation of these VIA principles and
is hence discussed subsequently followed by iWARP which implements the VIA
principles on the IP suite. The work related to the individual application use
cases presented in Part II of this thesis can be found in their respective chapters.

2.3.1 TCP/IP Optimizations

Various optimizations of TCP/IP based communication were proposed after Clark
et al. [CJRS89] observed and documented some fundamental performance limita-
tions. The limitations they found were mainly due to data touching operations
such as checksum calculations and data copying for large transfers rather than
the protocol processing itself. Kay and Pasquale [KP96] argued in their work,
that the cause of the TCP/IP overhead depended on the size of the data to be
exchanged. For small messages—typically used for control messages targeting low
latency—the non-data touching operations, such as protocol processing, consumed
a majority of the total processing time [KP93] while on larger data transfers, most
of the overhead was caused by checksum calculations and intermediate copying
which hindered a high throughput.

Efficiency in communication can be achieved through various design features [WM87,
ST93,Dav91]. The three main options are to

� optimize the processing of the protocol architecture [Bla96],

� optimize the OS support for the data transport [DP93] and

� careful utilization of hardware acceleration and function offloading [DWB+93].

Several suggestions were made to reduce the number of times, application data
had to be accessed [DAPP93]. On the transmit side, the copy-on-write scheme
was proposed [DWB+93] to reduce data touching: when a program wanted to send
data, the system set the state of the memory pages to read-only until the network
interface had completed the data transmission. The data was directly read from
its original location in memory (without intermediate copying). If, however, the

2.3. RELATED WORK 19

application wrote to these pages, the memory manager interrupted the program
and copied the data into a temporary buffer in order to guarantee correctness of the
transfer. This approach required changes to the memory manager of the operating
system. Furthermore, the application had to be aware of this mechanism in order
to achieve good performance—it should not write the pages while they were being
transmitted. Also, this mechanism was limited to the transmit side even though
the larger overhead typically incurs on the receiver side.

Chase et al. [CGY01] discussed a number of TCP optimizations which allowed
for an overhead reduction on both sides. In terms of end system optimizations,
they distinguished between per-packet and per-byte overheads. To reduce the
former, they proposed extended frames (larger packets) and interrupt coalescing to
amortize the packet handling costs across multiple packets. The latter was tackled
with zero-copy networking based on the copy-on-write approach in combination
with page remapping. Furthermore, they offloaded the checksum calculation to the
network interface controller and pursued an integrated copy/checksum calculation
strategy. The shortcomings of their system, especially with respect to the zero-copy
aspect were that the maximum transmission unit (MTU) of the underlying network
had to be equal to the page size used. Furthermore, the application buffers were
required to be page aligned so that the network interface could deposit inbound
packet data at page boundary.

In order to reduce the TCP/IP overhead [CGY01,KP96], concepts were devel-
oped to avoid redundant copies not only on the operating system [kJC96, ST93],
but also on the application level [RAC97,DIFL96] as well as on the network inter-
face [DWB+93,LC95,vEBBV95,PF01]. In terms of the network interface, various
systems have been built and were attached to the host on different buses [LC95].
The SUN SAHI, Fore SPA-200, Myrinet LANai as well as the IBM SP2 were at-
tached to the I/O bus of the host and therefore quite far away from the CPU.
Others like the Cray T3D, the Meiko CS-2 and the Intel Paragon were directly
coupled to the memory bus and thus much closer to the processor. The HP Medusa
and Afterburner are examples of controllers attached to the graphics bus. Detailed
discussions on the host interface attachment can be found in the work by Smith
et al. [ST93] or by B. Davie [Dav90].

The Afterburner network card [DWB+93] which supported a single-copy stack
at rates up to 1 Gbps was proposed by Dalton et al. The idea behind their single-
copy mechanism3 was to have a dedicated area of memory on the card itself which
was shared between the processor and the network interface. The communication
between the OS and the card happened through FIFO queues. A big advantage
of Afterburner was that it could offer performance improvements for the sender as
well as for the receiver without changing the application interface.

3We would refer to this mechanism as zero-copy in today’s terminology.

20 CHAPTER 2. RDMA BACKGROUND

A different approach to address the copy overhead issue with respect to high
bandwidth I/O was taken by Druschel and Peterson [DP93]. They proposed a fa-
cility termed fast buffers (or fbufs), which combined virtual page remapping with
shared virtual memory thereby enabling an efficient cross-domain buffer manage-
ment. In contrast to the Afterburner, the (shared) data buffers were located in the
main memory of the host and not on the NIC. Remapping pages, however, required
several physical page table updates which could result in substantial overhead.

Blackwell [Bla96] suggested a technique to improve protocol performance for
protocols that used small messages rather than bulk data transfers. He argued
that the main overhead incurred with small messages was due to poor locality in
protocol processing code which meant that the processor spent more time loading
protocol code from memory than moving packet contents. To mitigate that prob-
lem, he proposed to reschedule the protocol layer processing based on a (generally
applicable) locality driven layer processing scheme (LDLP).

Menon and Zwaenepoel [MZ08] reviewed the TCP performance issues with re-
gard to small messages for recent systems that feature not only uniprocessors but
also Symmetric Multiprocessing (SMP) environments and virtualized hosts. Ac-
cording to their findings, reducing the communication overhead for small messages
becomes even more important with recent systems. Their work illustrated the ef-
fects of new hardware on the per-packet overhead and suggested optimizations for
the receive path. The sending side was not considered.

Due to the different pace in the evolution of processors and the host bus system,
particularly the memory bus, faster processors will not be able to solve the TCP
issues as documented by Markatos [Mar02]. As TCP/IP performance does not
scale linearly with processor speeds, communication abstractions which are not
based on sockets have to be considered.

2.3.2 User Level Networking

Already in the early 90s, various research groups advocated the so-called user level
networking principle [Dav91,ST93,vEBBV95] for systems then termed clusters of
workstations.

The goal of user level networking was two-fold. First, it aimed at offloading
the packet processing tasks to dedicated devices in order to save compute re-
sources on the host which were scarce at that time. Second, user level networking
promised to lower communication latency considerably compared to socket imple-
mentations. Common arguments for implementing network functionality in user
space included increased flexibility, easier maintenance, and the possibility to al-
low optimizations which were specific to the applications and could improve their
performance [TNML93,EM95].

The above goals of the proposed user level communication were tackled by

2.3. RELATED WORK 21

avoiding system calls, allowing the network interface controller to directly access
the user application payload in memory and by improving the notification process
on reception of network data as well as on completion of data transfers. These
techniques are today summarized as kernel-bypassing : the OS is only involved in
control tasks and taken out of the critical data path (the data follows a so-called
fast path).

Von Eicken et al. [vEBBV95] built upon the user level networking idea and
suggested U-Net, a communication architecture built on off-the-shelf communica-
tion hardware that provided processes with a virtual view of the network interface.
In their system, every application was given the illusion of having its own, private
network interface. They argued, that the entire protocol stack should be placed at
user level and that the operating system and hardware should allow protected user
level access directly to the network whereby the kernel must be removed from the
critical path and the applications were allowed to customize their communication
layers as needed. All buffer management and processing tasks were thus moved to
user space which enabled data to be sent directly out of the application data struc-
tures. U-Net offered support not only for traditional inter-networking protocols
but also for novel communication abstractions like Active Messages [vECGS92].
The basic idea behind Active Messages was that each message had a header con-
taining the address of a user space handler to be executed upon message arrival.
The contents of the message would then be passed as an argument to the handler
thereby exploiting the performance and flexibility of modern interconnects.

In user level networking, systems calls were often avoided by offering hard-
ware support for user level memory-mapped message passing. Systems that had
incorporated this technique included the Connection Machine CM-5 supercom-
puter [LAD+92], the MIT J-Machine multicomputer [NWD93], the MIT Alewife [ABC+98]
which was a large-scale multiprocessor that integrated both cache-coherent, dis-
tributed shared memory and user level message-passing in a single integrated hard-
ware framework and last but not least the Cray T3E [ABGS97]. All of them
either offered device interfaces located in memory or dedicated memory-mapped
processors for performing the message passing. Joerg et al. [HJ92] proposed an
improvement on the memory mapped network interface design through a tighter,
more optimized coupling of network and processor by utilizing processor-mapped
registers. The motivation behind it was the following: in order to send a message,
the processor had to execute a series of store operations to the memory mapped
network interface and to receive a message, a series of load operations was required.
These load and store operations could be eliminated with processor-mapped reg-
isters.

The Hamlyn interface architecture [BJM+96] proposed by HP labs, described
another efficient interface between multicomputer interconnection fabrics and the

22 CHAPTER 2. RDMA BACKGROUND

host processors. It used sender-based memory management to eliminate receive
buffer overruns and software-induced packet loss, provided applications with direct
hardware access in the user level networking spirit and offered protection between
applications running on a host. The setup consisted of standard HP workstations
connected through a Myrinet interconnection fabric.

Other projects used the processor address translation mechanism to enable
transmission of physical addresses from user space to the network interface thereby
allowing direct memory access (DMA) transfers of the payload data to and from
memory [Dav91]. This allowed for larger data transfers while preserving memory
protection. In those systems, the network interface typically had a (number of)
shared message queue(s) through which data transfer requests were communicated
from the application to the NIC. The messages on the queues contained at least
the start address of the data as well as the length.

Examples of this are the SHRIMP [BDFL96, DIFL96], FLASH [KOH+98] or
Tempest and Typhoon [RLW94] projects. The SHRIMP (Scalable High-Performance
Really Inexpensive Multi-Processor) project from Princeton aimed at building
high-performance servers from a network of commodity PCs and commodity op-
erating systems. As its name suggests, the primary motivation was that such
a system was significantly cheaper than a custom-designed multicomputer. As
a novel way of communication, Dubnicki et al. [DIFL96] suggested in the con-
text of the SHRIMP project to map remote memory into the local application
address space thereby enabling direct data transfers between the sender’s and re-
ceiver’s virtual address spaces. Before such a data transfer could take place, the
receiver had to export a region of its memory which the sender had to import.
Support from the hardware side as well as from the OS was required. The data
transfers within the hosts were realized through DMA operations. The Stanford
FLASH (Flexible Architecture for SHared memory) was a single-address space ma-
chine consisting of a large number of processing nodes connected by a low-latency,
high-bandwidth interconnection network. FLASH utilized a custom-designed node
controller to achieve cache-coherent shared memory and low-overhead user level
message passing. Tempest was a novel interface proposed by Reinhardt et al. that
exposed low-level communication and memory-system mechanisms allowing appli-
cation performance improvements. These mechanisms were implemented by the
Typhoon hardware platform which incorporated a fully-programmable user level
processor in the network interface.

A large part of the efforts for tighter and more efficient integration of the
network interface with the processor(s) presented above, eventually resulted in
the Virtual Interface Architecture (VIA) [CCC97] specification jointly proposed
by Compaq, Intel and Microsoft in December 1997.

2.3. RELATED WORK 23

2.3.3 The Virtual Interface Architecture

Clusters of standard servers were becoming cost-effective alternatives to expensive,
large-scale mainframes. In order to achieve a good overall performance, efficient
communication between these servers was crucial. Through the Virtual Interface
Architecture (VIA) [CCC97], the industry had provided a standard for efficient
cluster communication. VIA’s main concern was the interface between the network
and the application(s) running on top of it.

In the time before VIA, various System Area Networks (SAN) were developed
for building high performance clusters. The interfaces to these SANs were pro-
prietary and unique, however. The lack of standardization limited the number of
applications that were developed for them. On the other side, system designers
started to use Ethernet as basis for building cluster networks due to its standard-
ization, wide availability and relatively low cost. Unfortunately, Ethernet failed
to realize the performance potential of the underlying network hardware. Cluster
computing therefore faced a trade-off between performance and standardization.
VIA aimed at filling this gap while being independent of the underlying network
infrastructure, processor architecture and operating system [CR02].

Design challenges of virtual networks as described by the VIA specification
were addressed by Mainwaring and Culler [MC99]. The work investigated the ef-
fectiveness of network virtualization at scale and demonstrated that it was feasible
but challenging because virtual networks required dealing with the interaction be-
tween layers of the system and across nodes in the network. In that context, they
illustrated design considerations with regard to naming and protection, delivery
and error model as well as communication events and threads from an application
and OS perspective.

VIA Communication Principles

In the following, we briefly outline the system principles as defined in the Virtual
Interface Architecture Specification.

Like many of the research projects mentioned before, VIA aimed at reducing
the magnitude of the software overhead incurred during network data exchanges.
A fundamental design principle is the bypassing of the OS kernel on the perfor-
mance critical data path. Furthermore, as the name suggests, VIA provides the
applications running on top of it with the illusion of having a dedicated network
interface. In terms of the user level spirit, VIA provides the user application with
the facility to create and directly manipulate communication endpoints (VI’s).

Figure 2.6 shows a high level perspective of the VIA architecture. In contrast
to the socket abstraction where all communication functionality is provided by the
OS, VIA splits the functions between a VI consumer (the users of the VI) and the

24 CHAPTER 2. RDMA BACKGROUND

Application

VI Aware Application

Higher-Level API

VI User Agent

VI Kernel Agent

VI Network Interface Controller

D
a
ta

USER

KERN

HW

C
o
n
tr
o
l

VI

Consumer

VI

Provider

Figure 2.6: VIA model for OS bypassing. The specification distinguishes between
the VI consumer (application) and the VI provider (network subsystem). Data is
transfered on a fast path bypassing the OS.

VI provider (the kernel implementation of the Virtual Interface Architecture as
well as the hardware). The VI provider is responsible for the protected sharing of
the network controller, virtual to physical buffer address translations and the like.
Furthermore, it provides a reliable transport service. Within the VI provider, the
control path (to allocate or change the state of resources) is separated from the
performance critical data path which bypasses the OS kernel completely.

An important design decision in that respect is that in the VIA, the buffer
allocation and management is performed by the user rather than by the OS. The
user must explicitly register virtual Memory Regions which can thereafter be used
as buffers for transmitting and receiving data. As the network interface controller
accesses these user buffers through DMA operations (for zero-copy data transfers),
the virtual addresses have to be translated to physical ones. Furthermore, the
underlying pages must be pinned to prevent the data from being swapped out
to secondary storage in case of memory pressure—this is a major differentiator
compared with TCP/IP stacks.

VIA is designed with an asynchronous communication model between the ap-
plication and the network controller (Figure 2.7). A virtual interface consists of a
pair of Work Queues (WQ): a Send Queue and a Receive Queue. VI consumers
post Work Requests (WR) to these queues to send and receive data. Such a Work
Request contains all the information needed by the VI provider to execute the
data transfer (i.e., address of the communication buffer, offset, length of the data

2.3. RELATED WORK 25

VI Consumer

Network Interface Controller

VI

Provider

WR

R
e
c
v
 Q

S
e
n
d
 Q

WR

WR

WR

WR

WR
V
I

S
e
n
d
 D
o
o
rb
e
ll

R
e
c
v
 D
o
o
rb
e
ll

S
ta
tu
s

S
ta
tu
s

Figure 2.7: The VI consumer posts data transfer operations in terms of Work
Requests (WR) onto queues managed by the VI provider. Doorbells are used to
notify the NIC about new WRs being present on the respective queues.

transfer as well as a buffer identifier). The VI provider asynchronously reaps WRs
from the WQs, processes them and updates their status upon completion. The
consumer thereafter removes the completed WRs from the queues. Each queue
has an associated Doorbell through which the consumer notifies the provider that
new WRs have been posted to the queue.

The WRs can be used to issue one of the following communication operations:

Send/Receive: The Send and Receive operations are well known operations from
message passing systems. Each Send operation must have a matching Receive
operation at the remote end. In VIA terms, these operations are called two-sided
because the data exchange naturally involves both ends of the communication
channel. A Send WR specifies where the data should be taken from (on the local
machine) and the Receive WR on the remote machine specifies where the inbound
data is to be placed.

RDMA: On the other hand, there are the one-sided Remote Direct Memory Ac-
cess (RDMA) operations including RDMA Write and (optionally) RDMA Read.
For these RDMA operations, only the application issuing the operation is actively
involved in the data transfer. At the remote end, the data is placed by the NIC
without involvement of the application logic. An RDMA Write WR, for instance,
therefore not only specifies where the data should be taken from (locally) but also
where it is to be placed (remotely). RDMA operations require a buffer advertise-
ment prior to the data exchange.

26 CHAPTER 2. RDMA BACKGROUND

0

100

200

300

400

500

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Ethernet

Infiniband

Proprietary

Myrinet

Quadrics

SP Switch

Crossbar

Cray Interconnect

Fat Tree

Others

N/A

Figure 2.8: Top500 Supercomputer Sites—Interconnect family history. Today,
Ethernet has a share of over 50%, followed by InfiniBand with slightly more than
36%.

VIA Implementations

The Virtual Interface Architecture is an abstract specification that does neither
define an exact API nor any implementation details with respect to the verbs
provider—these are left open for the vendors.

As of today, there are two predominant implementations of the VIA specifica-
tion: the proprietary InfiniBand and the Ethernet-based iWARP (see Figure 2.8).
In the following, we briefly outline some implementation aspects of these two. The
rest of this thesis will then focus and be based on iWARP only. More details on
iWARP, its API and enablement options are presented in the next chapter.

InfiniBand. InfiniBand (IB) is the result of merging two competing connection
standards, Future I/O by Compaq, HP as well as IBM and Next Generation I/O
developed by Intel, Microsoft and Sun Microsystems. The InfiniBand Trade Asso-
ciation (IBTA) [ibt] maintains the InfiniBand Architecture (IBA). The first IBA
specification was released in 2000. InfiniBand is based on a point-to-point switched
I/O fabric and intended for connections within systems (module-to-module) as well
as for data center environments (chassis-to-chassis). It provides both, reliable mes-
saging (Send/Receive) as well as RDMA operations (RDMA Write/RDMA Read).
Its main application is as a low latency, high bandwidth interconnect in data cen-
ters and High Performance Computing (HPC) environments today. Because IB
was designed from ground up, it implements state-of-the-art mechanisms which
make it the current leader in terms of network bandwidth and communication la-

2.3. RELATED WORK 27

tency. A side effect of this approach is that the specification seems over-engineered
in various aspects—a lot of the features are defined as optional and hardly ever
implemented in practice. InfiniBand specifies a set of verbs [HCPR] that describe
the semantics of the interface without defining a precise API (this is again left to
be defined by the vendors).

iWARP. With the recent advent of 10 Gigabit Ethernet [inta], this low-cost,
switched-fabric interconnect used primarily for general purpose communication
and storage networking is advancing into the HPC space. Ethernet was originally
defined in 1975 running at 1 Mbps over copper. During the last 20 years, its band-
width has steadily increased to 100 Mbps, 1 Gbps and 10 Gbps. 40 Gbps Ethernet
is on the horizon and a standard for 100 Gbps is already under development. Even
though it cannot quite offer the performance of proprietary interconnects like IB or
Myrinet [RA07], its standards-based interface, support for legacy Ethernet fabrics
and lower cost provide significant customer benefits. IB and Myrinet on the other
hand require new infrastructure to be developed, deployed and managed [Rec03].

The Internet protocol (IP) suite defined by the Internet Engineering Task Force
(IETF) is ubiquitous today. The IP suite (commonly known as TCP/IP) specifies
management, network and transport protocols. Recently, the IETF has specified
a set of companion protocols for RDMA communication over TCP/IP [RMTB05]:
MPA [CER+07], DDP [SPRC07] and RDMAP [RMC+07]. The topmost protocol,
RDMAP, defines the high-level semantics. The DDP protocol then constitutes
how the RDMA payload is to be tagged, transferred to and placed at the commu-
nication buffers of an application (zero-copy). MPA finally serves as an auxiliary
layer that transports the discrete DDP packets over a TCP stream. This so called
iWARP4 stack enables RDMA connectivity over low-cost, Ethernet-based network
infrastructures. Think of iWARP as Ethernet extended with the features of In-
finiBand.

Based on the economies of scale, multi-gigabit Ethernet [inta] together with
iWARP have the potential to become the unifying interconnect in the data center,
relegating proprietary technologies such as InfiniBand, Myrinet, and Quadrics5

to niche markets [RA07]. The prices for previous Ethernet adapters have been
dropping fast and it is probably safe to expect the same for the 10 Gigabit mod-
els. Major server vendors already include 10 GbE per default. Also the prices
per switch port are tumbling. In terms of physical connections, optical standard
interfaces, 10GBase-T (i.e., Cat5 and RJ45) as well as CX4 are currently available
leaving the choice to the customers. Adaptation to existing infrastructure compo-

4The provenance of “iWARP” is controversial. One convincing explanation is to read it as an
acronym for “Internet Wide Area RDMA Protocol”.

5Quadrics fell victim to the global recession in June 2009
http://bits.blogs.nytimes.com/tag/quadrics

28 CHAPTER 2. RDMA BACKGROUND

T3 Unified Wire Engine

PCI -X

PCI -E

DMA

Engine

Application Co-

processor TX

Application Co-

processor RX

General-

purpose

Processor

TX Memory

RX Memory

Data Flow

Protocol

Processing

Engine

Traffic

Manager

Virtualization Engine

Packet

Filter and

Firewall

1G/10G

MAC

Memory Controller

1G/10G

MAC

Figure 2.9: T3 Unified Wire Adapter by Chelsio Communications. It is built
around a data flow protocol processing engine with high bandwidth external mem-
ory interfaces.

nents is thus ensured. The long term vision of iWARP is to be able to provide a
fabric convergence (unified wire) across data centers. While traditionally, different
interconnects were used for LAN/NAS, SAN and HPC, moving everything to Eth-
ernet has a number of advantages: it simplifies data center wiring (no gateways,
single switch type, etc.), lowers maintenance and operating costs (single admin,
fewer licenses, etc.) and still provides a high enough performance. Another very
promising property of 10 Gigabit Ethernet is its extended operating distance of
40 km, which allows a complete rethinking of physical data-center layout and its
integration with the Internet. A thorough comparison between InfiniBand and
iWARP in the context of server I/O networks and data center consolidation was
presented by R. Recio [Rec03].

Some vendors already offer complete 10 Gigabit iWARP hardware solutions
(e.g., Chelsio Communications or NetEffect6), termed RDMA-enabled NICs or
RNICs. While these adapters follow the VIA specification (zero-copy based data
transfers on RDMA), they can also be used as simple, high bandwidth Ethernet
adapters which are fully compatible with legacy Ethernet components. An RNIC
offers full offload of the whole protocol stack (RDMAP all the way down to Ether-
net) and thus essentially consists of an extended TCP offload engine together with
a DMA engine [Mog03]. Figure 2.9 shows the internal block level architecture of
the Terminator 3 Unified Wire Engine by Chelsio7 which was used throughout this

6NetEffect was bought by Intel in October 2008.
7http://chelsio.com/unifiedwire eng.html

2.3. RELATED WORK 29

thesis. We will discuss iWARP in detail in Chapter 3.
The idea of combining the VIA principles with the IP suite was proposed by

Buonadonna and Culler [BC02]. Their system, called Queue Pair IP, implemented
Queue Pair operations over a subset of TCP, UDP and IPv6 protocols on a pro-
grammable NIC. They could show that QP-based communication over IP has a
potential similar to InfiniBand but would run on a legacy infrastructure. With
that, they provided a proof-of-concept for the iWARP approach.

2.3.4 iWARP/RDMA Applicability

Research, and later also the industry, have largely focused on the enablement of ef-
ficient user level networking in general and iWARP/RDMA in particular. However,
there are still very few real applications out there that directly leverage the perfor-
mance potential. As we will illustrate in the following chapters, iWARP/RDMA
is best suited for applications that operate on large amounts of data such as real-
time high-definition video dissemination (see Chapter 6), digital image retrieval
or applications which are accessing and processing large scientific data sets (see
Chapter 7).

As a consequence, research has focused a lot on performance evaluations of
these new RDMA network interface controllers [DW05,BcFB+07,DWM06,FBB+05].
Liu et al. have also investigated their impact with respect to power consump-
tion [LPA09] and could show that RDMA requires less power than comparable
TCP/IP-based communication. A thorough study and comparison of different
high-performance networks was presented by Bell et al. [BBC+03].

RDMA Application Obstructions

Even though the performance improvement, overhead reduction and power effi-
ciency have shown to be promising, there are a number of reasons for the limited
application of RDMA so far. The most important issue is the lack of a gener-
ally accepted API. Today, there are two competing proposals: the Interconnect
Transport API (IT-API) [The] proposed by the Interconnect Software Consortium
which is part of the Open Group and the OpenFabrics API [ofe] proposed by the
OpenFabrics Alliance which stems from Open InfiniBand. Currently, the Open-
Fabrics API seems more popular because, unlike the IT-API, it supports RDMA
over InfiniBand and iWARP. Furthermore, it has become part of the vanilla Linux
kernel. Also, the OpenFabrics Alliance receives significant support from and is
collaborating with important OS vendors (Novel, Red Hat and Microsoft) and
leading chip manufacturers.

Another obstacle for a broad acceptance of RDMA is the API itself. It is not
only radically different from the socket interface but also much more complex to

30 CHAPTER 2. RDMA BACKGROUND

program (see Section 3.3). This implies that enabling an application for RDMA is
coupled with a significant amount of non-trivial recoding. There is no straightfor-
ward mapping from socket-based to RDMA-based communication because of the
explicit communication buffer management required by RDMA (cf. Chapter 5).

To mitigate the problem of application transformation, the InfiniBand Trade
Association has proposed the Sockets Direct Protocol (SDP). It provides a standard
wire protocol to support the socket abstraction over RDMA and thus eliminates
the need for application redesign. While it was originally limited to InfiniBand, it
has become transport agnostic and hence can also be used on top of iWARP. As
was shown by Balaji et al. [BNV+04], SDP improves the performance compared
to standard TCP sockets but is not able to realize the full potential of InfiniBand.
The applications running on SDP are not RDMA-aware and thus utilize their
buffers in a way which is not optimal for RDMA—we will discuss this in detail
in Chapter 4. In a follow-up paper, Balaji et al. [BBJP06] propose Asynchronous
Zero-Copy SDP, a mechanism with which allows the approaches for asynchronous
sockets to be used with ordinary (synchronous) sockets. This, however, works only
with InfiniBand because their design relies on atomic remote operations which are
not supported on iWARP.

A third reason for the lack of applications is that InfiniBand requires special,
expensive equipment and 10 Gbps iWARP RNICs have not been commercially
available until recently.

Explicit Memory Registration

A fundamental difference between user level networking and sockets is the ex-
plicit buffer management. For socket-based communication, the kernel provides
intermediate buffers to store the communication data. In the case of RDMA, the
user application itself is responsible for providing the necessary buffers. As we
will see in Chapter 4, the way these buffers are managed has a significant impact
on the overall application performance. Furthermore, not every application can
be tailored such that it can realize the potential of RDMA due to the overhead
of registering Memory Regions for holding the buffers. Based on our findings,
we will present some optimizations in terms of buffer management and memory
registration (Chapter 4).

The fact that RDMA requires an explicit communication buffer management
has been identified as a drawback before. A detailed analysis of the memory regis-
tration cost in the Mellanox InfiniBand software stack was presented by Mietke et
al. [MRB+06]. Even though it was not iWARP and not based on the OpenFabrics
RDMA stack (as in our case), the issues were similar. Unlike in this work, how-
ever, the only optimization put forward was to use large pages which resulted in a
cost reduction of 15%. Arbitrarily increasing the page size is not suitable in many

2.3. RELATED WORK 31

contexts and has nonnegligible side effects. Our proposed solution (Chapter 4)
is less intrusive and over all more effective. Also Nieplocha et al. [NTSP02] have
documented the memory (de-)registration overhead and even suggested to stream
data via preallocated registered memory buffers in a pipelined fashion. However,
they focus on small data sets only and do not take memory bus limitations into
consideration. Furthermore, their pipelined streaming is not generally applicable
as it requires dedicated threads and processes on the communicating hosts as well
as a custom protocol between them.

Bell and Bonachea [BB03] proposed a novel DMA registration strategy termed
Firehose. They aimed at using one-sided RDMA operations in the general case
which might necessitate the registration of a significant portion of the total phys-
ically available memory. Their approach targeted Global Address Space (GAS)
languages based on a globally-shared memory across clusters. While their ex-
periments were based on Myrinet, they also hinted at other similar approaches
based on Quadrics. Firehose seems well-suited for the GAS case but lacks general
applicability.

The idea to deregister buffer memory lazily was proposed by Tezuka et al. [TOHI98].
Upon receiving a deregistration request from the application, the subsystem would
not actually remove the registered segment but keep it in a cache to reduce future
buffer registration costs. The memory was unpinned only when the cache exceeded
a certain limit. Also Ou et al. [OHH09] propose a sophisticated cache for regis-
tered Memory Regions that is slightly more efficient than the Pin-down Cache by
Tezuka et al. Most popular RDMA subsystems as well as the Linux kernel do not
support MR caching yet. Even though it sounds like a good idea, kernel support is
required to keep the cache consistent since the user has access to a variety of oper-
ating system calls to alter the memory layout and thereby potentially destroying
earlier cached registrations. A detailed description of the issues can be found in
the work by Wyckoff and Wu [WW05]. Our proposed optimizations do not require
a modified kernel and are therefore more generally applicable.

Woodall et al. [WSBM06] propose a pipelined memory registration approach
which is application agnostic. They propose to split large messages into a num-
ber of small ones. For each message, an individual Memory Region is registered
on-demand before the data transfer. If this is done in a pipelined fashion, the regis-
tration process can be hidden behind the actual data transfer. However, the depth
of the pipeline is bound by the number of available network adapters because each
adapter can only handle one registration at a time—at least two adapters are thus
needed to lower the overall registration latency. Furthermore, as we will illustrate
in Section 3.4, RDMA performs best if the buffers exchanged are large contradict-
ing the split approach. The performance of this approach (even if many network
adapters are available) suffers when the data to be exchanged is small, due to the

32 CHAPTER 2. RDMA BACKGROUND

constant registration overhead (Chapter 4).
An important detail of the memory registration is that, once registered, each

MR has a fixed size. This is particularly critical on the receive side of a connection
where the Receive Work Queue elements are consumed from the Receive Queue
(RQ) in FIFO order by the RDMA adapter—they are not matched to the appro-
priate size. Thus, a data transmission fails if an inbound Send is too large for the
next pending Receive Work Queue element. Shipman et al. [SBB+07] have sug-
gested a combination of the Shared Receive Queue (SRQ) mechanism and several
parallel connections to mitigate this problem. While their approach allows the
sender to choose the size of the remote receive buffer, it requires several simulta-
neous RDMA connections for a single, logical application channel which severely
limits the scalability for upper level applications. Last but not least, with multiple
connections in parallel, the message ordering guarantee is lost which might lead
to race conditions.

Existing Applications

The iWARP/RDMA application domain is fairly narrow to-date. There are, how-
ever, some experimental implementations and even a small number of proposals
for protocol extensions to leverage this novel networking facility on a broader scale.

Storage. Despite RDMA being designed for offering I/O overhead reduction in
terms of memory access, there exist a number of suggestions for applying the
RDMA/VIA principles and features to network-attached storage applications op-
erating on to disks. In their work, Dalessandro and Wyckoff [DW07b] discussed a
number of alternative approaches for shipping data—stored in files—using RDMA.
In particular, they pointed out the issue of bringing the data from disk into a user
buffer only to transmit it again through the OS kernel. They found that the most
efficient way for transmitting data was to apply the kernel sendfile mechanism in
a pipelined fashion.

Callaghan et al. [CLRC+03] proposed an RDMA extension for the Network File
System (NFS) version 4 [SCR+03]. They suggested a subtle enhancement of NFS
with RDMA in a way which did not require changes in the applications running on
top of it: RDMA was to be used as the transport for the Remote Procedure Call
(RPC) messages which are ubiquitous in NFS. They distinguished between large
(data) and small (control) messages. As the direct data placement functionality
is only beneficial for large messages, they used conventional send operations for
control message exchanges. Noronha et al. [NCTP07] have recently documented
shortcomings of the original proposal and suggested some optimizations focusing
on the memory management as well as the NFS RPC control message sequence.

Another proposal in the area of Network Attached Storage (NAS), that tried to
leverage user level networking features was the Direct Access File System (DAFS)

2.3. RELATED WORK 33

by Magoutis et al. [MAF+02]. The file system was implemented in user space
rather than in kernel for the same arguments brought forward by the VIA com-
munity: flexibility, ease of maintenance and customization potential for individual
applications. In their paper, Magoutis et al. provided an extensive comparison
between DAFS and NFS and were able to show low latency, good bandwidth
utilization and low CPU overhead through a number of experiments and bench-
marks. In a later study [MAFS03], Magoutis et al. proposed an alternative to
their original DAFS which could offer the same performance but was simpler in
design (however not as portable). They presented optimizations to RPC-based
data transfers by using RDMA and pre-posting of application receive buffers. Fur-
thermore, they suggested Optimistic RDMA (ORDMA) as an alternative to RPC
in order to improve throughput for small messages. By extending DAFS with
ORDMA, they could again improve the performance of the system. While this
optimization showed an improved performance for small RPC I/Os due to the
reduced response time, it breaks compliance with the RDMA verbs on which the
industry has agreed.

In the space of Storage Area Networks (SAN), providing a block abstrac-
tion to clients, iSCSI [SMS+04] has emerged which provides the hosts with the
illusion of having disks locally attached where in reality they are distributed
across an IP-based SAN. Recently, the IETF has proposed a standard for improv-
ing iSCSI performance with iWARP/RDMA in their iSCSI extension for RDMA
(iSER) [KCH+07,DDW07]. The motivation was to utilize iWARP as a transport
for iSCSI in order to achieve direct, in-order as well as out-of-order placement
of SCSI data into pre-allocated buffers while maintaining in-order data delivery.
Similar to the NFS over RDMA approach presented before, iSER has also uti-
lized RDMA Read and RDMA Write operations for large data transfers and send
operations for control information.

A radically different suggestion for SAN over RDMA was brought forward
by Narasimhamurthy et al. [NGSH05]. They proposed the Quanta Data Storage
(QDS), a novel architecture for SANs, as an alternative to iSCSI and argued that
the iSCSI and iSER stacks had grown too large with the consequence that some
of the compute intensive functionality (e.g., checksum calculation) was duplicated
and the header overhead had become significant. Therefore they collapsed the
whole stack into their Effective Cross Layer (ECL) which incorporated ideas from
iSCSI, iWARP and TCP but was optimized for data storage. Their main principle
was to deal with the data in fixed blocks (quanta) rather than treat them as a
byte stream which seemed more natural for storage class applications. In contrast
to the other solutions, they implemented their ECL completely in software. An
interesting design decision was to create an asynchronous protocol in which most
of the compute intensive tasks were performed on the client in order to take load

34 CHAPTER 2. RDMA BACKGROUND

off the server. In Chapter 5, we have pursued a similar approach and designed an
asynchronous, RDMA-based protocol for distributed source code compilation.

High Performance Computing. Another prominent use case for RDMA is
the Message Passing Interface (MPI) ubiquitously used by large-scale scientific
applications running on clusters [VM03, SBM+05, TG03, BSL07, LWK+03]. We
will not go into details of MPI over RDMA here, though.

Java. Today, a substantial fraction of the applications are written in Java. There-
fore, also the Java community has shown interest in efficient, high performance
communication promised by the user level networking principles. The need for
Java InfiniBand support in particular and low overhead, high performance com-
munication in general was expressed by Zhang et al. [ZHH+07]. Java can only
compete with C/C++ in the HPC market if it offers support for efficient I/O.

However, Java is not a good fit for the VIA paradigms. First of all, Java is
not designed for explicit user level buffer management. There is, for instance, the
garbage collector which frees buffers which are no longer in use. With the user
level networking principle, however, a buffer might not be in use by the application
but the ownership might have been transferred to the underlying NIC—garbage
collector modifications would be required to handle that case. Furthermore, due to
the indirect buffer layout used in Java VMs (JVM), the data is (in most cases) not
directly accessible by the NIC—a fundamental assumption of the VIA principles.
So the fundamental challenge in combining Java and RDMA is how and where to
manage the buffers. The two apparent options (that do not require changes to the
JVM) are:

� Keep the buffers on the Java heap. This strategy allows seamless and efficient
access for Java applications but due to the indirect nature of the internal
Java buffer structure, they are not directly accessible by the NIC. The Java
Native Interface (JNI) can be used to make the buffers accessible by the
NIC. However, moving the data between the Java heap and the native code
requires a copy for all but the primitive data types.

� Manage the buffers in the native code. In this scenario, the buffers are easily
accessible by the NIC but Java applications must access them through JNI
calls. We would face the same copy issue as before and are not transparent
to the applications.

Baker et al. [BCS06] reasoned about the buffer management in the context of
High Performance Computing in Java. While they did not discuss user level net-
working, their work suggested that an intermediate buffering layer for an efficient
HPC messaging system in Java could be realized through direct buffers provided
by the Java New I/O (Java NIO). Also, they highlighted the memory management

2.3. RELATED WORK 35

issues with regard to the Java garbage collector (constant creation and destruction
of buffers is expensive). Their findings can directly be applied for efficient I/O in
the communication context as well. The problem with the direct buffers, however,
is that they are outside the scope of the Java garbage collector.

An early proposal for a VIA-aware RPC mechanism, called J-RPC, was pre-
sented by Chang et al. [CvE98]. In their work, they illustrated (un-)marshalling
problems and pointer issues which stem from the indirect buffer management
scheme of Java. Furthermore, they came to the conclusion that true zero-copy
communication was only possible for arrays of primitive types unless the JVM was
modified.

Despite all this, it is tempting to use the Java Native Interface to implement an
API for user level networking. JNI allows a Java application to be extended with
functionality which cannot entirely be implemented in Java. Unfortunately, the
JNI requires a data copy for all but the primitive types which limits its zero-copy
suitability as illustrated by Welsh and Culler [WC00]. The authors presented a
detailed overhead comparison between the JNI path and comparable C code and
showed the limitations of JNI. Therefore, they suggested Jaguar [WC00] as a rem-
edy. Jaguar was a mechanism which offered efficient access to system resources for
high performance I/O (not limited to communication) while preserving the pro-
tection of the Java environment. In particular, Welsh and Culler demonstrated a
way to offer efficient user level networking for Java applications by translating Java
byte code to inlined machine code sequences at compile time. Even though their
experiments looked promising, they were limited to as little as a few 100 Mbps.

At the same time, Javia [CvE00] was presented. Javia was designed as a
Java interface customized for the VI architecture (not a general I/O interface
like Jaguar). Chang and von Eicken addressed the buffer management issues and
suggested two approaches. The fist one used JNI and thus required copying. The
buffers were managed in the native code. The second approach introduced a special
buffer class in Java in combination with an extension of the garbage collector.
While this approach required a custom JVM, it was able to avoid the intermediate
copy step between the Java heap and the native interface.

Recently, Huang et al. have proposed the Java Direct InfiniBand (Jdib) [HZH+07].
Their solution aimed at exploiting the RDMA capabilities of InfiniBand by offering
the IB verbs API to Java applications. In their work, they confirmed the difficulty
of passing data between the Java heap and JNI. Nevertheless, they utilized JNI
and even achieved decent performance. However, it was not quite clear how they
have implemented the mapping between the VIA principles (direct data access)
and JVM (indirect buffer scheme). Also, it was not clear what kinds of Java ob-
jects they have used for their experiments. This is vital because, as stated above,
transferring primitive types can be done by reference in JNI; all the rest requires

36 CHAPTER 2. RDMA BACKGROUND

copying.

Summary and Outlook.

So even though IB and iWARP promise a significant overhead reduction, improved
latency and higher throughput due to the VIA principles, they require applications
to be re-written in order to realize the full potential. In some cases, this is not
possible or the performance benefit is not large enough to justify the effort. In
the upcoming chapter, we will illustrate the iWARP host integration as well as
the proposed API with its implications in detail. A thorough assessment of when
the application of RDMA-based communication is beneficial is then provided in
Chapter 4.

3
iWARP: RDMA over Ethernet

While we have hinted at RDMA over Ethernet (also known as iWARP) in the
previous chapter (Section 2.3.3), we will now discuss what is necessary to ulti-
mately enable an application for iWARP/RDMA. The approach taken to do this
is bottom-up: we start by looking at the wire protocol and move up to the appli-
cation level.

First, we will illustrate the iWARP protocol stack as proposed by the IETF. In
that context, we will discuss our extension to the Wireshark [wir] network protocol
analyzer which allows the inspection and dissection of iWARP traffic. Thereafter,
we will look at the host system integration of the iWARP/RDMA subsystem.
In particular, we will describe our software-based iWARP solution which enables
iWARP communication on hosts without RDMA hardware. Next, we discuss in-
terfaces offered to the RDMA consumer (the user application). As we will see, the
general interface is rather cumbersome to program and error prone. Therefore, we
suggest a simplified API which allows the fast development of iWARP-based appli-
cations while conserving the performance and flexibility of the original interface.
Also, we will experiment with a radically different interface to RDMA: the well-
known UNIX file abstraction. Last, we will see iWARP in action: we first show a
simple but complete iWARP application based on our lightweight library to give
future programmers a head start and then present a suite of micro benchmarks to
visualize the performance of RDMA over Ethernet.

37

38 CHAPTER 3. IWARP: RDMA OVER ETHERNET

Ethernet

IP

TCP

MPA

SCTP

DDP

RDMAP

SDP

Application Webserver DB2 Oracle NFSv4
SCSI

iSCSI

iSER

Socket API RDMA API

iW
A
R
P

N
e
tw
o
r
k
 P
r
o
to
c
o
l
S
ta
c
k

A
P
I

C
o
n
s
u
m
e
r

Figure 3.1: iWARP protocol stack, API and some applications.

3.1 The Protocol Stack

In order to enable RDMA over Ethernet, the IETF has standardized three com-
panion protocols over TCP/IP [RMTB05]. These are, from bottom up, the Marker
PDU Aligned Framing for TCP (MPA) [CER+07], the Direct Data Placement over
Reliable Transports (DDP) [SPRC07] and finally the Remote Direct Memory Ac-
cess Protocol (RDMAP) [RMC+07]. Figure 3.1 depicts the whole stack. In the
following, we focus only on the Network Protocol Stack part of the figure. The
API will be discussed in Section 3.3 and applications are presented in Part II of
this thesis.

The three iWARP building blocks depicted in the figure provide the following
functionality:

MPA Marker PDU Aligned Framing acts as a data adaptation layer between TCP
(stream-based) and DDP (packet-based). It keeps the reliable, in-order de-
livery of TCP while adding the preservation of higher-level protocol record
boundaries. In other words, it preserves the header alignment for DDP. To

3.1. THE PROTOCOL STACK 39

that end, MPA splits the outbound data into Framed Protocol Data Units
(FPDUs) and (optionally) inserts Markers into the byte stream at fixed
intervals to recover from header misalignment on reception. Each marker
contains the offset to the previous header. Being able to locate the header of
the upper layer protocol (DDP) is useful to hardware network adapters that
use DDP to directly place inbound data into the user buffer without requiring
that the packets arrive in order. Additionally, MPA appends an (optional)
Cyclic Redundancy Check (CRC32c) to each FPDU to prevent data corrup-
tion [SP00]. Last but not least, MPA is used to signal the transition from
normal TCP stream mode to full RDMA operation of the connection. For
detailed information see RFC 5044.

DDP The Direct Data Placement layer provides information for directly placing
inbound data (which potentially arrives out of order) in the appropriate user
level application buffer. This is the core protocol for enabling zero-copy
data transfers over Ethernet. As we have discussed earlier, avoiding the
intermediate copies (through the kernel) is highly desirable as it leads not
only to a reduced memory bus traffic but also to a lower CPU load and fewer
context switches. DDP operates on messages and can either run over MPA
plus TCP or the Stream Control Transmission Protocol (SCTP) [SXM+00].
MPA was mainly introduced because TCP is much more wide spread than
SCTP which makes RDMA-style communication over TCP more desirable.
DDP distinguishes between the tagged and untagged buffer model. The
tagged model allows the local peer to advertise a named buffer to the remote
peer. Such a buffer is assigned a unique tag, called Steering Tag or STag
which enables the remote peer to specify where the data is to be placed at
the local peer. In the untagged model, on the other hand, the local buffer
is kept anonymous and the local peer specifies where inbound data is to
be placed. Reliable, in-order delivery is provided for both, the tagged and
untagged buffer model. The additional information provided by DDP allows
the user level buffer to be used as reassembly buffer even in the case where
the MPA or SCTP messages arrive out of order. More information on the
exact delivery semantics, the packet format and the like can be found in RFC
5041.

RDMAP The Remote Direct Memory Access Protocol, finally, provides the data
transfer semantics over DDP that enable a kernel bypass implementation.
RDMAP distinguishes between one-sided (RDMA Write and RDMA Read)
and two-sided (Send/Receive) operations. With one-sided operations, only
the application layer of the peer issuing the operation is involved. At the
other peer, the data transfer is handled entirely by the RDMA hardware (i.e.,

40 CHAPTER 3. IWARP: RDMA OVER ETHERNET

Local Peer Remote Peer

SQE

SQE

SQE

CRC Hdr

Src Buf Dst BufRQE

Src Buf

CRC

Dst Buf Ta

Ta

Dst Buf Tb

Src Buf Tc

Untagged Message

Tagged Message

Untagged Message

TPT

Tagged Message

S
e
n
d

R
D
M
A

W
ri
te

R
D
M
A

R
e
a
d

R
e
c
e
iv
e

CRC TcTb

CRCTb

Data

Data

Data

Send Q Recv Q

TPT

Hdr

Figure 3.2: RDMA operations. The untagged model is used for the Send and
RDMA Read Request messages whereas the tagged model is used for RDMA Write
and RDMA Read Response messages.

the RNIC). With two-sided operations, on the other hand, the application
layers of both peers are involved. The one-side operations require a prior
buffer advertisement and thus utilize the tagged buffer model from DDP
whereas the two-sided operations follow the untagged buffer model. RDMAP
is described in full detail in RFC 5040.

Figure 3.2 illustrates the use of the tagged and untagged buffer model. The
topmost data transfer represents the two-sided Send/Receive operation. The Send
Queue Element (SQE) on the Send Queue (SQ) contains the location of the source
buffer. At the remote peer, the destination buffer is identified by the corresponding
Receive Queue Element (RQE) of the Receive Queue (RQ). Note, that the mes-
sage on the wire does not contain any source or destination buffer information—
tags—and is thus called untagged. For a formal introduction of the queue-based
interaction, see Section 3.3.

The data transfer in middle represents a one-sided RDMA Write operation.
Here, the SQE not only contains the location of the source buffer (like in the
case of a Send operation) but also the sink buffer tag (Ta). As the local peer is
able to steer the data directly into a given (pre-advertised) named buffer at the
remote end, this operation follows the tagged buffer model. On the remote peer,
the incoming data is verified against the Translation and Protection Table (TPT)

3.1. THE PROTOCOL STACK 41

but there is no corresponding RQE.
The last operation depicted is the RDMA Read. In contrast to the other two

operations, the RDMA Read consists of a ping-pong message exchange on the
wire. The local peer starts by sending a RDMA Read Request carrying the source
(remote) and destination (local) tags Tc and Tb. The remote peer then replies
with a RDMA Read Response message containing the actual data as well as the
destination buffer information supplied with the RDMA Read Request (Tb). The
RDMA Read Response is essentially an inverse RDMA Write. As with all named
buffers, the data exchange is verified against the respective TPTs.

3.1.1 Protocol Analyzer Extension

In order to visualize the iWARP traffic on the wire, we have extended the well-
known Wireshark network protocol analyzer [wir]. Without our extension, Wire-
shark displays all iWARP/RDMA data simply as payload of the TCP protocol.
Having the iWARP protocol header fields in a human readable format aided
not only in the task of verifying our software iWARP implementation (see Sec-
tion 3.2.2) but also helps in tracing iWARP applications. Furthermore, it is help-
ful in understanding the inner workings of the iWARP protocol suite from a wire
perspective. We have chosen Wireshark because it is open source software and has
an active developer community.

Figure 3.3 displays a sample packet dissection done by our iWARP aware Wire-
shark. The packet displayed is an MPA connection request frame—we are thus in
the process of establishing an iWARP connection. As we can see, the connection
initiator does not want to use markers (Marker flag: False) but will attach a valid
CRC to each FPDU (CRC flag: True). Without our extension, Wireshark would
stop dissecting the data at TCP level and display the MPA request frame as a
series of octets which would then have to be analyzed by hand.

Support for new protocols is added to Wireshark by means of dissectors. We
have thus added dissectors for for full MPA, DDP and RDMAP inspection. Our im-
plementation features reassembly of individual MPA FPDUs into full DDP/RDMAP
messages. Furthermore, we are able to verify the attached CRC, provide filtering
capabilities for packets of interest and detect protocol discrepancies. Dissecting
iWARP traffic is a non-trivial task for a number of reasons: first, the protocol head-
ers are interleaved (see below). Second, MPA optionally inserts markers within
the byte stream. These have to be tracked because they can end up not only in the
payload but also within the header of a message. Third, individual FPDUs must
be reassembled to reconstruct meaningful, complete DDP/RDMAP messages. Our
code has become part of the official Wireshark release (since version 1.2.0).

Figure 3.4 shows the complete iWARP headers for Send (3.4(a)), RDMA
Write (3.4(b)), RDMA Read Request (3.4(c)) and RDMA Read Response (3.4(d))

42 CHAPTER 3. IWARP: RDMA OVER ETHERNET

Frame 671 (78 bytes on wire, 78 bytes captured)

Ethernet II, Src: ChelsioC_05:65:e1 (00:07:43:05:65:e1), Dst: ChelsioC_05:70:97 (00:07:43:05:70:97)

802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 1

Internet Protocol, Src: 9.4.243.132 (9.4.243.132), Dst: 9.4.243.131 (9.4.243.131)

Transmission Control Protocol, Src Port: 34595 (34595), Dst Port: norton-lambert (2338), Seq: 1, Ack: 1, Len: 20

Source port: 34595 (34595)

Destination port: norton-lambert (2338)

[Stream index: 1]

Sequence number: 1 (relative sequence number)

[Next sequence number: 21 (relative sequence number)]

Acknowledgement number: 1 (relative ack number)

Header length: 20 bytes

Header length: 20 bytes

Window size: 262144 (scaled)

Checksum: 0x5e1d [validation disabled]

[SEQ/ACK analysis]

[Number of bytes in flight: 20]

iWARP Marker Protocol data unit Aligned framing

Request frame header

ID Req frame: 4D504120494420526571204672616D65

0... = Marker flag: False

.1.. = CRC flag: True

..0. = Connection rejected flag: False

...0 0000 = Reserved: 0x00

Revision: 1

Private data length: 0 bytes

Figure 3.3: Wireshark protocol analyzer. iWARP traffic is dissected into a human
readable format rather than just being displayed as and array of octets.

3.1. THE PROTOCOL STACK 43

ULPDU Length T L Rsv DV RV Rsv Opcode

Reserved (Not Used)

Send Queue Number (QN)

Send Message Sequence Number (MSN)

Send Message Offset (MO)

CRC

PAD

Marker

0 3115

ULP Payload

MPA

DDP

RDMAP

(a) Send FPDU.

ULPDU Length T L Rsv DV RV Rsv Opcode

Data Sink STag

Data Sink Tagged Offset

CRC

PAD

Marker

0 3115

ULP Payload

MPA

DDP

RDMAP

(b) RDMA Write FPDU.

ULPDU Length T L Rsv DV RV Rsv Opcode

Reserved (Not Used)

DDP Queue Number (QN)

DDP Message Sequence Number (MSN)

DDP Message Offset (MO)

CRC

Data Sink STag

Data Sink Tagged Offset

RDMA Read Message Size

Data Source STag

Data Source Tagged Offset

0 3115

MPA

DDP

RDMAP

(c) RDMA Read Request FPDU.

ULPDU Length T L Rsv DV RV Rsv Opcode

Data Sink STag

Data Sink Tagged Offset

CRC

PAD

Marker

0 3115

ULP Payload

MPA

DDP

RDMAP

(d) RDMA Read Response FPDU.

Figure 3.4: iWARP protocol FPDUs. MPA, DDP and RDMAP protocol headers
are transported as TCP payload. DDP and RDMAP headers are interleaved.

44 CHAPTER 3. IWARP: RDMA OVER ETHERNET

which are recognized and dissected by our extension. The black pieces belong to
MPA, the white ones to DDP and the light gray ones to RDMAP. Each of the four
messages represents an FPDU. Each FPDU encapsulates a DDP segment with
RDMAP information. One or several of these segments form a DDP/RDMAP
message. The respective fields of each FPDU are described in the following.

The MPA information contains the Upper Layer Protocol Data Unit (ULPDU)
Length in number of bytes (not including the MPA information itself), potential
markers, padding at the end of the ULP payload and the CRC.1

The first octet of the DDP header is referred to as the control field. It states
whether the message follows the tagged or untagged buffer model (T) and whether
this is the last segment of a DDP message (L). The rest of the DDP message de-
pends on the buffer model. For an untagged message (i.e., either Send or RDMA
Read Request), the queue number of the data sink’s untagged buffer queue (con-
stant across all DDP messages for a given connection), the message sequence num-
ber (increased by one for each new message) as well as the message offset of the
current segment (relative to the beginning of the whole DDP message) are spec-
ified. In other words, the queue number specifies the connection (like a port in
TCP), the sequence number enables order preservation between individual DDP
messages and the message offset enables order preservation among individual seg-
ments within a DDP message. This allows data to be placed directly in the ap-
plication buffer even if it arrives out of order (for an RNIC). The tagged DDP
messages (i.e., RDMA Write and RDMA Read Response) are a bit simpler and
shorter. They contain the STag of the data sink (destination buffer) as well as
the offset within that buffer. The offset can be specified either relative to the
beginning of the buffer or as an absolute virtual address. As we will see later in
this chapter, the performance and overhead are nearly equivalent for the tagged
and untagged buffer model. The differences are mainly relevant in terms of the
semantic for upper layer application protocols.

Also RDMAP starts with a single octet of control information which primarily
contains the operation code (Opcode) indicating the data transfer type (Send,
RDMA Write, etc.). For the Send, RDMA Write and RDMA Read Response2,
the RDMAP does not add further information. Only the application payload
is inserted. For the RDMA Read Request, however, the source and destination
information as well as the length of the data transfer are specified. Note that
there is no payload attached to that message.

A simplified view of these operations was provided in Figure 3.2. Further
protocol details can be found in the respective RFC documents (see beginning of
Section 3.1).

1The CRC is filled with zeros if it is disabled.
2The RDMA Read Response is essentially an inverse RDMA Write.

3.2. HOST SYSTEM INTEGRATION 45

3.1.2 Security Considerations

The iWARP stack does not provide any security features to prevent spoofing,
tampering and information disclosure attacks. As it is based on TCP/IP, however,
standard security services such as IPsec (network) or SSL/TLS (transport) can be
applied without modification.

In terms of remote memory access, the RDMA enabled NIC (RNIC) is respon-
sible to verify a number of things before fetching or placing data. First of all,
the STag (buffer ID) must be valid which means that the buffer must exist and
have been registered with the RNIC. Second, the address specified by the opera-
tion must be within the address range of the buffer referenced by the STag—the
address cannot be beyond the end or before the start address of the buffer. Fur-
thermore, the end of the data transfer operation must not exceed the available,
registered buffer space. If these criteria are not met, a so-called base-and-bounds
exception is thrown and the data transfer fails. Also, each iWARP object lives
within a Protection Domain (PD) for resource isolation. The RDMA enabled NIC
must assure that data transfers execute only within their respective PD. By this
mechanism, it is possible to isolate buffers of different processes from each other:
it is not possible to access a buffer of a foreign PD. We will look into more details
of the iWARP object management later in the context of the RDMA API.

3.2 Host System Integration

In the previous section, we have seen the wire protocol of iWARP. Now it is time
to look into the integration of iWARP/RDMA into the host system. As we have
outlined in Section 2.3, there are different ways of doing this. In the following,
we will focus on the method chosen by the OpenFabrics Alliance within their
OpenFabrics Enterprise Distribution (OFED) on which all our work is based. As
mentioned earlier, OFED is the most widespread RDMA software stack thanks to
the strong participation from various important players of the industry3, its dual
support for InfiniBand (IB) as well as iWARP and its availability for Linux and
Windows.

3.2.1 The OpenFabrics Software Stack

The OpenFabrics software stack (OFED)4 provides the necessary software support
by means of user level libraries and kernel extensions to bridge RDMA enabled
hardware (i.e., IB and iWARP adapters) with user applications. While it was

3Intel, AMD, Cisco, IBM, Chelsio, Sun Microsystems, Oracle, Microsoft and others.
4http://www.openfabrics.org/downloads/OFED/

46 CHAPTER 3. IWARP: RDMA OVER ETHERNET

OFED kernel level verbs / API

InfiniBand HCA iWARP RNIC

IB CM IW CM
CM abstraction

IPoIB

Drivers

Hardware

SDP iSER

IP based

app access

socket

based

app access

MPI

block

storage

access

NFSv4

access to

file system

Mid Layer /

Core

Upper Layer

Protocols

User API

Application

Level

k
e
rn
e
l
b
y
p
a
s
s

HW specific driver

k
e
rn
e
l b
y
p
a
s
s

HW specific driver

InfiniBand (IB) iWARP

VP specific library VP specific library

OFED user level verbs / API

U
s
e
r

K
e
rn
e
l

Figure 3.5: The OpenFabrics software stack (OFED). The illustration is reduced
to the aspects which are relevant for this thesis.

originally designed exclusively for InfiniBand, support for RDMA over Ethernet
was added with the standardization of the iWARP stack by the IETF and the
emergence of RNICs. The benefit of this duality is that OFED can be used to run
applications (unmodified) on IB as well as iWARP fabrics—the API and thus also
the user applications have become transport agnostic. In particular, legacy Infini-
Band applications from the HPC corner can now also run on Ethernet. However,
the stack has grown quite large and complex. To make matters worse, there is no
real documentation because too many parties work on the stack in parallel. As we
will discuss in the following section, also the API has demanded compromises when
iWARP support was added—particularly the connection management is rather la-
borious. For these reasons and the ones mentioned in Section 2.3.4, developers are
still reluctant to move TCP/IP-based applications to RDMA despite the potential
for significant performance improvement.

Figure 3.5 depicts selected aspects of the OFED stack which are relevant for
this discussion. The left side of the illustration shows aspects more specific to IB
while the right side focuses on iWARP. At the very top, we have the user space with
the application level and the user libraries (to be discussed in Section 3.3.2). In the
center, the kernel space is shown including some upper layer protocols mentioned
earlier and the mid layer hosting the core functionality of the stack. This includes
not only the RDMA object management but also the connection management

3.2. HOST SYSTEM INTEGRATION 47

(CM) for IB and iWARP. Thanks to the CM abstraction, user applications are
agnostic to the connection establishment and teardown details of the respective
fabrics. The hardware specific device drivers finally conclude the kernel code. At
the bottom, RDMA hardware such as an InfiniBand Host Channel Adapter (HCA)
or an RDMA enabled NIC (RNIC) is shown. As described in the virtual interface
architecture, a fast path bypassing the operating system kernel is provided for an
efficient data propagation between the network adapter and the application layer.

The stack further distinguishes between general access functionality and vendor
specific libraries and drivers. In the user API of Figure 3.5, we find a general
purpose OFED user level verbs library which implements the API provided to
applications according to the RDMA verbs specification [HCPR]. Below that,
there are verbs provider (VP) specific libraries (e.g., for the Chelsio T3 adapter)
that map the general functions to device specific ones. Like this, each vendor can
implement its private fast path to the hardware, for instance. The same functional
division is found in kernel space where the OFED core contains the general access
functionality (e.g., for a kernel verbs consumer) which then invokes the individual
device drivers.

Further details on the OpenFabrics stack can be found on their website5 or in
the tour through the OFED stack provided by J.George [Geo].

3.2.2 Softiwarp: iWARP Communication without an RNIC

The OFED stack is open source software and therefore extensible. We have made
use of that and developed Softiwarp—an iWARP verbs provider implemented en-
tirely in software.6 The benefit of Softiwarp is that any ordinary NIC can now
be used for iWARP communication. From an application point of view, it is sim-
ply another verbs provider. Within the OFED stack, Softiwarp is realized as an
additional hardware specific driver, targeting legacy Ethernet NICs that are not
RDMA-capable by themselves.

The implementation of Softiwarp follows the standard design of the OFED
stack7: it consists of a user library attached to the general OFED verbs library and
a device driver (kernel module) which plugs into the OFED core (see Figure 3.6).
Even though our module uses unmodified kernel sockets for the data exchange,
Softiwarp allows for the same communication semantics as an RNIC (e.g., asyn-
chronous interface, one-sided operations, etc.) because it maps the whole RDMA
object hierarchy in software which is otherwise implemented in hardware. In con-
trast to the hardware solutions, however, Softiwarp does not provide a fast path

5http://www.openfabrics.org
6In the course of my thesis, I have been co-developing this software RDMA solution under

the lead of B.Metzler (see http://www.zurich.ibm.com/sys/software).
7Currently, there is only a Linux version of Softiwarp.

48 CHAPTER 3. IWARP: RDMA OVER ETHERNET

OFED user libraries

Ethernet NIC

IW CMOFED core

Verbs

Provider

Hardware

Softiwarp user library

application

Mid-Layer

User API

Application

Level

Softiwarp kernel module

Figure 3.6: OFED software stack extended with Softiwarp.

between the user library and the device.
For obvious reasons, we do not achieve the same performance and overhead

reduction as a true RNIC (cf. Section 3.4). However, hardware support is not
always necessary and often too expensive. Softiwarp therefore makes RDMA at-
tractive for a whole range of applications for which RDMA would otherwise not be
an option. Since it is wire-compatible with an RNIC, Softiwarp allows for mixed
setups consisting of hardware- and software enabled RDMA. Typical examples for
this are client/server scenarios (e.g., video streaming, Chapter 6) where a single
server must be able to sustain a high aggregate throughput while the clients are
numerous and only require a small fraction of the total bandwidth for which hard-

Softiwarp clients

Server farm

using RNICs

Figure 3.7: Asymmetrical client/server setup. The servers are equipped with
RNICs for performance while the clients run Softiwarp for cost reasons.

3.2. HOST SYSTEM INTEGRATION 49

Application

TCP/IP

HW Driver

NIC

(a) Classical

Application

HW Driver

iWARP

NIC

TCP/IP

(b) Softiwarp

TOE

Application

TCP/IP

iWARP

HW Driver

(c) Softiwarp/TOE

Application

RNIC

TCP/IP

iWARP

HW Driver

(d) RNIC

Figure 3.8: Different offloading options. From the conventional TCP/IP stack
(a) over iWARP in software without (b) and with (c) TCP/IP offloading to full
hardware offload (d).

ware acceleration and zero-copy are not required (Figure 3.7). In such a setup,
the server can be equipped with a real RNIC (for performance) while the clients
run Softiwarp (for cost reasons). It is important to understand that both sides of
the connection must have iWARP/RDMA capabilities or else the server cannot
perform zero-copy RDMA data transfers and has to fall back to ordinary TCP
communication inducing the well-known overhead. Another interesting use case
for Softiwarp is to have it as a fallback option within a server in case the real RNIC
fails.

In contrast to the function offloading principle followed by RNICs, we on-load
the iWARP processing onto the general purpose CPU(s), see Figure 3.8. With
today’s multicore systems, dedicating a CPU core to iWARP processing can be
a cost-effective alternative [RMI+04]. Furthermore, techniques such as the Intel
I/O Acceleration Technology [ioa] allow network data to be moved more efficiently
through recent CPUs. Additionally, a TCP offload engine (TOE) could be used to
take the TCP/IP stack processing load off the CPU. Still, Softiwarp is unlikely to
replace RNICs in the near future due to the remaining memory bus limitation. An
experimental evaluation of the performance offered by Softiwarp based on micro
benchmarks vis a vis real RNICs is presented in the upcoming Section 3.4.

Softiwarp, was first presented by B.Metzler et al. [MNF09] at the 2009 Inter-
national Sonoma Workshop where the transmit and receive path within the kernel
module were discussed. The feedback was positive and we thus have returned the
code to OpenFabrics for Softiwarp to become part of the standard Linux kernel.
Before we had the OFED-based Softiwarp, the kernel module (then called Soft-
RDMA) was standalone and featured a different API, the IT-API [The]. Details
on SoftRDMA, which eventually led to Softiwarp, were published by Neeser et
al. [NMF10].

50 CHAPTER 3. IWARP: RDMA OVER ETHERNET

Related Projects

The Ohio Supercomputer Center has presented an alternative software implemen-
tation of the iWARP protocol stack [DDW05]. They provided a kernel-space and
a user-space version together with a set of wrapper functions that followed the
OpenFabrics verbs. The implementation itself was not designed within the OFED
framework, however. The Ohio stack suggested its own, non-standardized API
which made applications that were built on it less portable and fabric-aware.
Concerning the performance, CRC calculation in software resulted in a latency
increase by a factor of two. The maximum throughput on 1 Gigabit Ethernet of
about 920 Mb/s could only be reached with packets of size 16 KB or larger and
with CRC disabled. Our previous implementation, SoftRDMA, on the other hand
achieved the same throughput already with 2 KB packets (or 4 KB if CRC was
enabled). The CPU load induced by the Ohio stack was also considerably higher
than that of SoftRDMA, especially at the receiver side. For results on the current
implementation, see Section 3.4.

Balaji et al. [BJVP05] have addressed the lack of backwards compatibility
of iWARP communication by introducing yet another software stack to emulate
iWARP. Their stack was enhanced with a so-called extended socket interface which
could provide the necessary backwards compatibility for socket based applications
by overloading the standard socket implementation. Furthermore, they claimed
to have exposed the richer feature set of iWARP (i.e., asynchronous interface,
zero-copy and one-sided operations) to be used by the applications with minimal
modifications. However, they did not provide any details on what that meant in
practice and how large these minimal modifications really were. Furthermore, they
did not address the important discrepancy between the implicit and explicit buffer
management from an application perspective. Performance wise, their iWARP
stack with the extended sockets lagged significantly behind plain TCP in terms of
latency and throughput due to the slow inter process channel (IPC) between the
threads which they used for enabling asynchronous processing. Also locking of the
shared queues seemed to be a problem. As in the case of the Ohio stack [DDW05],
their kernel implementation outperforms the user space implementation.

A thorough comparison between host-based, host-offloaded (RNIC) and par-
tially offloaded iWARP processing was performed by Balaji et al. [BcFB+07]. In
particular, they focused on iWARP specific aspects like support for out-of-order
data placement, MPA marker handling and CRC calculation. They showed that
CRC calculation was one of the most expensive tasks in the iWARP stack. Fur-
thermore, they pointed out the importance of having a true scatter/gather DMA
engine on the NIC for efficient marker handling and out-of-order data placement.
While they were able to outperform their RNIC—which did not have a true scat-
ter/gather DMA engine—by offloading only parts of the functionality, this is no

3.3. CONSUMER INTERFACES 51

longer likely to be possible with today’s hardware.
An even more radical approach was proposed by Binkert et al. [BSR06]. In

order to meet the needs of future high performance TCP/IP networking, they sug-
gested the integration of the NIC with the CPU for backwards compatibility. Their
novel NIC design strove at being simpler while providing a performance equivalent
to a conventional DMA-based NIC. Instead of creating the usual overhead and
complexity of DMA descriptor management, they exposed a raw FIFO interface
to the device driver. With that, they were able to avoid the copy overhead on the
receive side and could decouple packet header inspection from payload copying.

3.3 Consumer Interfaces

After having presented the common option for integrating RDMA into today’s
computer systems, we will now discuss how this iWARP/RDMA subsystem is
accessed from a user application perspective.8 To that end, we start with a short
overview of the RDMA verbs [HCPR] on which the industry has agreed. As
the verbs only provide the semantics but no concrete interface, we will thereafter
continue our journey with the API exported by the OpenFabrics stack. Finally, we
will present two alternative interfaces with the potential for simplifying application
development.

3.3.1 RDMA Verbs

The RDMA Protocol Verbs Specification [HCPR] describes the interface seman-
tics that build the basis for the interaction between applications and the RDMA
subsystem. Every RDMA enabled NIC (RNIC)9 has to follow them for compli-
ance. However, the exact details of the implementation are left open to the RNIC
vendors. In this section, we will highlight the key aspects of the verbs which are
relevant for the subsequent discussion. For that, we start by looking at the defined
RDMA programming abstractions.

RDMA Object Overview

Before RDMA operations can be executed, we not only need to establish the con-
nection but also have to create a number of programming objects. These objects
live within the RNIC. The verbs consumer merely holds references to them. Fig-
ure 3.9 depicts the main objects described by the verbs in a resource creation

8Even though it is possible to access the RDMA subsystem also as a kernel consumer, we
restrict the discussion to the user level.

9This also includes software implementations like Softiwarp.

52 CHAPTER 3. IWARP: RDMA OVER ETHERNET

QP

SQ

RQ

WR

PD

CQ

MR

Figure 3.9: Resource creation dependency diagram for the main RDMA verbs
objects: Protection Domain (PD), Completion Queue (CQ), Queue Pair (QP)
with Send Queue (SQ) and Receive Queue (RQ), Memory Region (MR) and Work
Request (WR).

dependency diagram. The complete diagram can be found in the verbs specifica-
tion [HCPR] on page 26.

PD The root object is the Protection Domain (PD), which provides a security
mechanism for mutual resource isolation between different processes. Upon
creation of the PD, an ID is returned which is used to refer to the PD and
create further objects within it.

CQ Then comes the Completion Queue (CQ) which acts as a container for Work
Completions (WC). If requested, WCs are generated by the verbs provider
(RNIC) whenever an RDMA operation has terminated in order to signal
completion and indicate the status of the operation (error or success) to the
application level.

QP With the PD and CQ in place, a Queue Pair (QP) can be created which is
used by the application to post requests for RDMA operations to the verbs
provider. It consists of two queues (hence the name): the Send Queue (SQ)
and the Receive Queue (RQ). The SQ is used for send type messages such as
Send, RDMA Write and RDMA Read as well as for local operations. The
RQ, on the other hand, holds Receive Work Requests which are consumed on
inbound Send messages. Think of a QP as a connection endpoint abstraction
similar to TCP sockets.10 Each QP lives within a PD and has an associated
CQ for completion reporting.

MR Within the PD, user communication buffers, termed Memory Regions (MRs),
can be created. A Memory Region is essentially a user buffer which is regis-
tered with the verbs provider. After such a registration, the MR is identified

10Like a socket, the QP also has different states depending on the lower-layer connection status.

3.3. CONSUMER INTERFACES 53

QP

SQ

RQ

CQ

RNIC

Application

1

2

4

5

3

Processing

Engine

(a) Post Send

2

QP

SQ

RQ

CQ

RNIC

Application

1

3
4

5

Processing

Engine

(b) Post Receive

Figure 3.10: Communication queues for sending and receiving data.

within the RDMA subsystem by its unique Steering Tag (STag). Further-
more, it has a (user virtual) starting address and a size. Like the QP, each
MR lives within a PD for protection against access from processes running
in different PDs.11

WR In order to execute an RDMA operation, we finally need to create a Work
Request (WR). WRs are used to describe the operation to be executed (i.e.,
operation type, address(es), STag(s), length, etc.). Send WRs are appended
to the Send Queue and Receive WRs to the Receive Queue (see upcoming
section on Work Request Processing).

Now that the programming abstractions are in place, we can look closer into
the consumer/provider interaction.

Queue-based Consumer/Provider Interface

Following the Virtual Interface Architecture, the RDMA verbs propose a queue-
based communication between the verbs consumer (application) and the verbs
provider (RNIC) which allows for an asynchronous interaction enabling the overlap
of communication and computation. The value of this feature will be discussed
throughout the examples presented in Part II of this thesis. Figure 3.10 depicts
the communication scheme for sending (3.10(a)) and receiving (3.10(b)) data.

11It is possible use the same PD for different QPs to allow sharing of MRs.

54 CHAPTER 3. IWARP: RDMA OVER ETHERNET

As mentioned previously, the application posts Work Requests (WR) onto the
Work Queues of its Queue Pair (QP) to submit operations to the RNIC (step 1
in Figure 3.10). For sending data, the application creates a Send Work Request
(Send WR) and posts it onto the Send Queue (SQ). The processing engine of the
RNIC then asynchronously reaps the Work Request from the SQ (in FIFO order)
and performs the send data transfer (steps 2 and 3 in Figure 3.10(a)). A Send
Work Request can trigger one of the following operations: Send, RDMA Write or
RDMA Read.12

Figure 3.10(b) illustrates the data receive path. Receive Work Requests (Re-
ceive WRs) are posted to the Receive Queue (RQ) of the QP on the RNIC. They
contain local placement information for inbound data, transported within Send
messages. The RNIC consumes exactly one Receive WR for each inbound Send
(in FIFO order).

Whenever the verbs provider has finished processing either a Send WR or a
Receive WR, it reports the completion status by appending a corresponding Work
Completion (WC) to the Completion Queue (CQ) attached to the QP (step 4).
The consumer then polls the CQ to retrieve the completion (step 5). Only now,
the application is guaranteed that the data transfer has completed. The CQ can
be used in various ways: it is possible to assign a separate CQ for holding Work
Completions from the Send Queue and from the Receive Queue which facilitates
completion handling because it is implicitly known whether it belongs to a Send-
or Receive Work Request. On the other hand, it is also possible to use just one
CQ for the whole QP (or even for several QPs) in order to reduce the number of
objects and build a centralized completion handling mechanism.

Memory Management

The interaction between the application and the networking subsystem is not the
only difference between RDMA and TCP sockets; also the way in which the com-
munication buffers are managed is radically different. In the sockets interface, the
buffers are located in the kernel, hidden from the application. With RDMA, how-
ever, the application has to manage all communication buffers manually in user
space. In practice, this means that an application first has to create buffers of
appropriate size by using OS provided memory allocation mechanisms like mmap

or malloc. Thereafter, in order to enable the memory to be accessed by the
RNIC, (parts of) this buffer must be registered with the verbs provider through
the RDMA subsystem.

From now on, the buffer is referred to as a Memory Region (MR). Each MR is
assigned a Steering Tag (STag) for identification as well as local and remote access

12Even though data is “received” with an RDMA Read operation, it is scheduled as a send
operation.

3.3. CONSUMER INTERFACES 55

rights. Furthermore, its virtual starting address, called Tagged Offset (TO), and its
size are recorded. After MR registration, the TO, size and STag cannot be altered
anymore. To alter these parameters, the concept of the Memory Window (MW)
was introduced in the verbs (see Section 7.10 of the verbs specification [HCPR]).

A thorough analysis and description of the MR registration process is presented
in the upcoming Chapter 4.

Work Request Processing

The fundamental unit for the application to communicate with the RNIC is the
Work Request (WR). WRs are created by the application and posted to the Send
Queue or Receive Queue depending on the type of the WR.

Figure 3.11 displays the format of WRs implemented by the OpenFabrics stack.
Figure 3.11(a) illustrates the Send WR while Figure 3.11(b) shows the Receive
WR structure. Both WR types carry a user specified WR ID (wr id) which is
reflected in the Work Completion for identification. The local buffer is always
represented as a scatter/gather list (sg list) consisting of a number of scatter/gather
elements (num sge). Each such element carries the address, length and STag13 of
the Memory Region it refers to. Furthermore, WRs can be linked (next pointer)
which enables multiple WRs to be posted with a single call.

In contrast to the Receive WR, the Send WR contains some additional in-
formation. First, there is the operation code (opcode) indicating the type of send
operation to be executed (i.e., Send, RDMA Write, RDMA Read). Then, there are
some send flags that can be specified. The most important one for iWARP is the
signaled flag. WRs without this flag set are dropped silently when the data trans-
fer has finished—no Work Completion is created. This flag is particularly useful if
the application is not (immediately) interested in the completion of the operation.
Since WRs are processed in order, it might be sufficient to request a Work Comple-
tion only every n operations in order to reduce the processing overhead. We will
see in Section 3.4, that these non-signaled WRs significantly lower the CPU load
due to the reduced interaction between the application and the RDMA subsystem.
As introduced in Section 3.1, DDP supports tagged and untagged send messages.
For the tagged ones (i.e., RDMA Write and RDMA Read), the remote buffer is
referenced in the WR through the remote address (remote addr) and remote STag
(rkey). Here, the remote address can either be an absolute user virtual address or
an offset towards the beginning of the MR referenced by the remote STag. For an
untagged message, this information is omitted.

13OpenFabrics refers to STags by the InfiniBand naming as lkey (local) and rkey (remote).

56 CHAPTER 3. IWARP: RDMA OVER ETHERNET

ibv_send_wr

wr_id

*next

*sg_list
ibv_sge

addr

len

lkey

ibv_sge

addr

len

lkey

ibv_sge

addr

len

lkey

num_sge

opcode

send_flags

imm_data

wr

wr

rdma

ud

atomic

rdma

remote_addr

rkey

R
E
M
O
T
E
 M
E
M

rkey

L
O
C
A
L
 M
E
Mlkey

lkey

lkey

local

information

remote

information

ibv_send_wr

*next

ibv_send_wr

*next

(a) Send Work Request

ibv_recv_wr

wr_id

*next

*sg_list
ibv_sge

addr

len

lkey

ibv_sge

addr

len

lkey

ibv_sge

addr

len

lkey

num_sge

L
O
C
A
L
 M
E
Mlkey

lkey

lkey

only local

information

ibv_recv_wr

*next

ibv_recv_wr

*next

(b) Receive Work Request

Figure 3.11: Send- and Receive Work Request layout within OFED.

3.3. CONSUMER INTERFACES 57

Verbs Interface

Before looking at the API suggested by OpenFabrics, we briefly summarize the
operations described semantically in the verbs. First, a verbs provider (RNIC)
can be opened and closed. By these two operations, we (un-)assign our RDMA
programming objects to a specific network interface. For the Protection Domain,
(de-)allocation semantics are described. The Queue Pair as well as the Comple-
tion Queue can be created, queried, modified and finally destroyed. In terms of
the memory management, Memory Regions and Memory Windows can be (de-
)registered. Finally, the verbs describe the operations on an existing Queue Pair
and Completion Queue. For the first one, posting to the Send Queue as well as to
the Receive Queue are supported. The latter queue can be polled for completions.
Alternatively, a completion notification can be requested to learn about newly
available Work Completions.

3.3.2 OFED API

We now move on from the semantic description of the RDMA interface to the
concrete API used most widely in practice today: the OpenFabrics API provided
to interact with the OpenFabrics Enterprise Distribution (OFED). While the API
follows the verbs specification, there are some design decisions left open to the
verbs provider and addressed by OFED which are worth mentioning in this context.
In the following, we illustrate the steps necessary to setup and close an iWARP
communication channel and to finally perform actual RDMA data transfers.

iWARP Channel Setup

Setting up an iWARP/RDMA channel is quite cumbersome with the OFED API.
In a first set of steps, the network interface (RNIC) is selected. Thereafter, the peer
initiating the connection (termed Initiator) creates the necessary RDMA objects
and sends a connection request to the Responder. Upon receipt of such a request,
the Responder creates his RDMA objects and accepts the connection.

Figure 3.12 lists these steps in detail. Both peers start by creating an RDMA
Event Channel (1) which is used to receive connection events. Next, an RDMA
Connection Management ID is created on the Event Channel (2). The IDs are
then bound (3) to a particular verbs provider (RNIC) by supplying the respective
IP addresses (listen address on the Responder and source/destination addresses
on the Initiator). From now on, the Event Channel can be used to listen for
connection events from the selected RNIC.

In the following, the Responder and Initiator proceed differently: the Initiator
uses the Event Channel to wait for the events indicating resolution of the addresses

58 CHAPTER 3. IWARP: RDMA OVER ETHERNET

struct rdma_event_channel*

rdma_create_event_channel ()

int rdma_create_id (

IN rdma_event_channel,

OUT srv_cm_id,

IN user_context,

IN portspace)

int rdma_bind_addr (

IN/OUT srv_cm_id,

IN sock_addr)

int rdma_listen (

IN/OUT srv_cm_id,

IN backlog)

struct ibv_pd* ibv_alloc_pd (

IN cli_cm_id->verbs)

struct ibv_comp_channel*

ibv_create_comp_channel (

IN cli_cm_id->verbs)

struct ibv_cq* ibv_create_cq (

IN cli_cm_id->verbs,

IN n_cqes,

IN user_context,

IN ibv_comp_channel,

IN comp_vector)

int rdma_create_qp(

IN/OUT cli_cm_id,

IN ibv_pd,

IN qp_init_attrs)

int rdma_accept(

IN/OUT cli_cm_id,

IN conn_params)

int rdma_resolve_addr (

IN/OUT cli_cm_id

IN src_addr

IN dst_addr

IN timeout)

int rdma_resolve_route(

IN/OUT cli_cm_id,

IN timeout)

int rdma_connect (

IN/OUT cli_cm_id,

IN conn_param)

RESPONDER INITIATOR

int rdma_get_cm_event (

IN rdma_event_channel,

OUT cm_event)

int rdma_ack_cm_event (

IN/OUT cm_event)

cli_cm_id = cm_event->id

int ibv_req_notify_cq (

IN ibv_cq,

IN solicited_only)

struct rdma_event_channel*

rdma_create_event_channel ()

int rdma_create_id (

IN rdma_event_channel,

OUT cli_cm_id,

IN user_context,

IN portspace)

int rdma_get_cm_event (

IN rdma_event_channel,

OUT cm_event)

int rdma_ack_cm_event (

IN/OUT cm_event)

int rdma_get_cm_event (

IN rdma_event_channel,

OUT cm_event)

int rdma_ack_cm_event (

IN/OUT cm_event)

struct ibv_pd* ibv_alloc_pd (

IN cli_cm_id->verbs)

struct ibv_comp_channel*

ibv_create_comp_channel (

IN cli_cm_id->verbs)

struct ibv_cq* ibv_create_cq (

IN cli_cm_id->verbs,

IN n_cqes,

IN user_context,

IN ibv_comp_channel,

IN comp_vector)

int ibv_req_notify_cq (

IN ibv_cq,

IN solicited_only)

int rdma_create_qp(

IN/OUT cli_cm_id,

IN ibv_pd,

IN qp_init_attrs)

MPA CONN REQ

MPA CONN REP

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

1:

2:

3:

4:

5:

6:

7:

8:

10:

11:

12:

13:

14:

9:

Figure 3.12: Setting up an iWARP/RDMA connection using the OFED API.

3.3. CONSUMER INTERFACES 59

and the route to the Responder (steps 3–8).14 These resolution steps are based
on the host routing table to find a suitable, local RNIC which is connected to
the same network as the Responder. After that search has succeeded, the RDMA
programming objects are created: first, a Protection Domain is allocated (9).15

Since the Completion Queue offers both, polling and notification on completion
events, we need another Event Channel (the Completion Event Channel) (10).
Now, the Completion Queue can be created (11) based on the verbs provider
and the Completion Event Channel. In step (12), a completion notification is
requested for the Completion Queue—in this example, the Initiator makes use
of the notification mechanism rather than polling the queue. The last remaining
object to be created, is the Queue Pair (13). Finally, the MPA connection request
is sent (14).

The Responder, on the other hand, proceeds as follows: initially, it uses the
RDMA Event Channel to wait for the connection request from the Initiator (steps
4–6). Upon arrival of such a request, it proceeds with the creation of the RDMA
programming objects. An important difference is, that the Responder uses the Ini-
tiator -provided RDMA Connection Management ID rather than its own. Think
of the Responder ID as the server socket and the Initiator ID as the client socket.
The ID of the Responder is reserved for accepting further incoming connection
requests. After all the objects have been created, the Responder accepts the con-
nection request (12) which triggers an RDMA Connection Established event on
the RDMA Event Channel and completes the connection setup.

As we will argue in Section 3.3.3, the connection setup is similar in most cases
and can easily be wrapped to simplify application programming.

RDMA Communication and Buffer Management

Once the iWARP/RDMA communication channel is established, we can start is-
suing RDMA data transfers. To do that, we first need to create some buffers and
register them as Memory Regions (MRs). In OFED, this is achieved by calling
ibv reg mr(*pd, *addr, length, access rights). Each MR lives inside a Protection
Domain (pd), starts at a given address (addr) and has a certain length (length).
The last argument of the registration call (access rights) is used to specify the lo-
cal and remote access rights (e.g., remote read-only, local/remote read-write, etc.).
The start of the MR as well as its length do not have to match that of the user
buffer—it can also lie within it (see Figure 3.13). However, only the part which
has been registered can be accessed by the RNIC.

14All events have to be acknowledged for resource cleanup purposes after they have been
consumed.

15The verbs pointer of the RDMA Connection Management ID is used to refer to the selected
verbs provider.

60 CHAPTER 3. IWARP: RDMA OVER ETHERNET

Memory Region (MR)

malloc (0x16)

ibv_reg_mr(*pd, 0x04, 0x10, acc)

0x00 0x04 0x14 0x16

Figure 3.13: Registering a Memory Region of length 16 (0x10) with an offset of 4
(0x04) within a user buffer of length 22 (0x16).

In order to initiate a Send, RDMA Write or RDMA Read operation, a re-
spective Work Request has to be posted onto the Send Queue of the Queue Pair
by means of ibv post send(*qp, *send wr, **error wr). The whole zero-terminated
WR list (send wr) is processed and erroneous WRs are reported through the er-
ror wr pointer. For filling the Receive Queue with Receive Work Requests, the
ibv post recv(*qp, *recv wr, **error wr) is used analogously.

If a Completion Event Channel is in place, we can wait on it for Work Comple-
tions. To that end, ibv get cq event(*channel, **cq, **context) is used which blocks
until there is a new WC on any CQ. The CQ, on which the WC is pending, is
returned through the cq pointer. In order to get the WC, we need to poll that CQ
by means of ibv poll cq(*cp, num entries, *wc) which returns num entries WCs or
empties the CQ in case there are fewer WCs pending. Through this mechanism, we
can find out when an operation, scheduled by earlier posting of a respective WR,
has completed—we are guaranteed that the data has been placed in its entirety
upon reception of the respective Work Completion.

Channel Teardown

In contrast to the channel establishment, closing an iWARP connection is simple.
Both sides, the Initiator as well as the Responder, can initiate connection tear-
down by calling rdma disconnect(cm id). The RDMA Connection Management ID
(cm id) is used to identify the connection to be closed. This causes a RDMA Dis-
connect Event to be generated on the RDMA Event Channel on both sides. As
soon as this event is received, not only the iWARP- but also the underlying TCP
connection are closed. Cleaning up the RDMA programming objects is done in
the reverse order as they were created.

3.3.3 iWARP Library

The API suggested by OFED follows the RDMA verbs closely and is suitable not
only for iWARP but also for InfiniBand. However, it has become rather cumber-
some to program against (especially with regard to the connection management

3.3. CONSUMER INTERFACES 61

as demonstrated in the previous section). In order to facilitate the development of
iWARP/RDMA applications, we present a novel iWARP library consisting of a set
of wrappers on top of the original OFED API. The goal of this effort is three-fold:
first, the overhead incurred by the library must be negligible if at all. Second,
the original functionality provided by the OFED API must be preserved. Third,
the API exported by the new library should allow even non-experts in the field
of OFED/RDMA to write such programs. In that respect, we do not primarily
focus on reducing the number of lines of code but on eliminating sources of error
by hiding the complexity.

In the following, we highlight the key features of the library from a coding
perspective. To allow a one-on-one comparison, we follow the same structure
as in the discussion of the OFED API (previous Section). A complete example
application based on our library and API is shown in the upcoming Section 3.4.

iWARP Channel Setup

In order to ease the transformation from sockets to the RDMA verbs for developers,
we have designed the connection management similar to what people are used
from sockets. Furthermore, contrary to the OFED API, we keep all the RDMA
programming objects (including the RDMA Connection Management IDs (CM
ID)) in a single structure termed iWARP Context. We use this context as an
abstraction for the iWARP/RDMA channel since all the programming objects are
eventually bound to a single connection on an RNIC anyway. Figure 3.14 illustrates
the complete state diagram for our iWARP Context. It might look large at first
but some of the states are transitioned through automatically (shown in gray)
and are only displayed for completeness. Upon creation, the context is INVALID.
After having selected the verbs provider, its state changes to VALID and finally to
CONNECTED after successful connection establishment.

The two programming steps of the Initiator (right-hand side of Figure 3.14)
are the following: the connection establishment process is started by allocating
the iWARP Context using iw ctx alloc() for which the remote IP address and
port number are specified. In the background, the library creates all the neces-
sary RDMA objects and transitions the CM ID through the address- and route
resolution—note that the library handles and dispatches all connection events for
us. Upon return of this call, we are ready for sending the connection request by
means of iw connect(). This call blocks until the Responder has either accepted
or rejected our request. When the call returns successfully, the iWARP channel is
ready for data exchanges. These two steps incorporate steps 1–14 of the original
OFED verbs.

On the Responder side, we prepare for incoming connection requests by calling
iw open() where we specify the listen IP address/port pair and with that select

62 CHAPTER 3. IWARP: RDMA OVER ETHERNET

iw_listen()

iw_open()

INVALID

ADDR_RES

ROUTE_RES

CONN_REQ

VALID

REJECTED

CONNECTED

DISCONNECTED

ERROR

iw_await_

disconnect()

CONN_REQ

ROUTE_RES

ADDR_RES

ESTABLISHED

DISCONNECTED

iw_ctx_alloc()

iw_accept()

iw_reject()

iw_connect()

iw_ctx_alloc()

REJECTED

ESTABLISHED

iw_disconnect()

DISCONNECTED

RESPONDER INITIATOR

Figure 3.14: Setting up an iWARP/RDMA connection using our simplified iWARP
library.

3.3. CONSUMER INTERFACES 63

the local verbs provider. We then wait (blocking) for inbound connection requests
using iw listen(). Upon receipt of a connection request, the iWARP Context is
moved to the CONN REQ state. From there, we have to finalize the RDMA object
creation by calling iw ctx alloc() (corresponds to steps 7–11 of Figure 3.12) before
we either accept the request (iw accept()) or reject it (iw reject()). After returning
from iw accept(), the iWARP channel is ready.

RDMA Communication and Buffer Management

When using the OFED verbs for communication, first of all, a user buffer has
to be created and registered with the RNIC. Thereafter, a list of scatter/gather
structures (SGL) is needed—even for a single scatter/gather element—which is re-
ferred to by the Work Request. Finally, we have to set all the members of the Work
Request structure to describe the desired RDMA data transfer (cf. Figure 3.11).
Although this is generally not an issue with respect to the final application perfor-
mance, it is extremely error prone—a lot of code is necessary to perform (even a
simple) RDMA data transfer. The original verbs provide no easy-to-use function
to transfer a (part of a) Memory Region to the remote peer. Things get even
more complicated when performing the buffer advertisements through RDMA op-
erations as well.16 Our library fills this gap by providing not only a simplified
buffer management interface but also an easy-to-use, in-band buffer advertisement
mechanism as well as intuitive data transfer and completion handling primitives.

Buffer Management. For facilitating the communication buffer management,
we offer the options of either creating a new buffer (including the allocation) or
registering an existing one. We further distinguish between local Memory Regions
(lmr) and remote ones (rmr). A new MR is created by calling

� iw lmr create(size, access rights, lmr out, iw ctx)

while an existing one can be registered with

� iw lmr register(buf addr, size, access rights, lmr out, iw ctx).

In either case, the developer does not have to worry about the Protection Do-
main as it is automatically taken from the iWARP Context (iw ctx). We also
provide a function to handle MR deregistration and optional freeing of the under-
lying memory.

Buffer Advertisement. In order to facilitate in-band buffer advertisements, we
provide the following three functions using the iWARP Context (iw ctx):

16Performing the buffer advertisement on a separate TCP channel is simpler but the message
ordering guarantee is lost which is dangerous with respect to race conditions.

64 CHAPTER 3. IWARP: RDMA OVER ETHERNET

� iw post send adv(lmr, iw ctx) to advertise a local MR (lmr),

� iw post recv adv(iw ctx) to prepare for an inbound advertisement and

� iw wait recv adv(rmr out, iw ctx) to blocking wait for the advertisement.

Data Transfer Primitives. While the OFED API always needs a SGL for
referring to a local buffer (MR), our library adds support for direct addressing if
only one scatter/gather element is used. To further simplify the code, we provide
individual functions for each RDMA operation—the iWARP Context is used to
select the connection.

� post send lmr(lmr src, offset src, length, send flags, iw ctx)

� post write lmr(lmr src, offset src, rmr dst, offset dst, length, send flags, iw ctx)

� post read lmr(lmr dst, offset dst, rmr src, offset src, length, send flags, iw ctx)

The above three functions, offer an intuitive interface to the programmer which
allows the specification of addresses and offsets for the source and destination
buffers rather than having to deal with scatter/gather structures. In addition to
these functions, we provide SGL-based versions in case the data is spread across
several buffers. Also the Receive operation is supported in these two variants
(direct addressing and SGL).

Work Completion Handling. Finally, we simplify waiting for the completion
of signaled operations. Where in the OFED API, the developer has to write code
for installing and (re-)arming an Event Channel which eventually returns an event
containing a Completion Queue to be polled, we provide the following function for
hiding this complexity:

� await completions(cq type, num wcs, *wc list, iw ctx)

The CQ type specifies whether we wait for an event on the Receive Queue
or on the Send Queue—we use separate CQs for the Receive- and Send Work
Completions. With a single call to be above function, we can reap several Work
Completions (num wcs) which are returned through a pre-allocated list (wc list).
Again, the connection in question is selected by the iWARP Context.

Channel Teardown

Closing an iWARP connection can happen actively with iw disconnect(iw ctx) or
passively by calling iw await disconnect(iw ctx). The connection to be closed is
defined once more by the iWARP Context.

3.3. CONSUMER INTERFACES 65

Summary

By hiding the complexity of the OFED API within the library and by combining
all the state within the iWARP Context, we not only simplify and accelerate
iWARP/RDMA application development but also make the application code less
error prone. The connection establishment is reduced from 12 down to 2 calls.
Furthermore, the asynchronous event handling is encapsulated and the results
are offered through a simple interface. Also, the memory management and Work
Request posting tasks have become easier and more natural. Hence, in-depth
knowledge of the OFED peculiarities is no longer required.

Since our library is essentially a set of wrappers for the OFED API, it does
not limit the original functionality: it is always possible to write code in a form
mixed between the OFED API and the iWARP library, in case special features
of the original API or individual RDMA programming objects are needed. The
performance goal is also met: as we will show by experiment (later in this chapter),
there is no significant performance difference between our library and the original
OFED verbs.

The library has proven useful through various projects carried out as part of
this thesis. Furthermore, it has been fed back to the OpenFabrics community
which has shown great interest and does want to include it in future releases of
OFED.

3.3.4 The File Abstraction - An Alternative Interface

In addition to the iWARP library, we have conducted a case study and feasibility
assessment of an even more radical approach for hiding the complexity. Following
the UNIX principle where everything is a file, we propose to use (a subset of) the
POSIX file interface for performing data transfers over RDMA. To that end, we
have developed a primitive architecture for transparent mappings between stan-
dard file operations (i.e., fopen, fclose, fwrite, fread) and RDMA operations (i.e.,
RDMA Write and RDMA Read). As it is merely a proof of concept rather than
a final system, the mapping is straightforward as follows: fopen establishes a new
connection to the remote host (unless the target is local) and creates the neces-
sary buffer for holding the file content. fwrite and fread are mapped to RDMA
Write and RDMA Read, respectively. fclose, finally, terminates the connection
established with fopen and frees the buffer again (if it holds the last remaining
reference to it).

We have realized that mapping by pre-loading17 the functions provided by the
GNU C Library (Glibc) with our own. In order to separate RDMA data transfers

17see http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html

66 CHAPTER 3. IWARP: RDMA OVER ETHERNET

F
D
 m
a
n
a
g
e
r

Application

Path parser

fopen() fwrite(), fread(), fclose(), ...

Glibc

Create

VFD

FD lookup

engine

NetworkServer

component

Client component

Local file

Remote file

Memory

Disk

Figure 3.15: Remote file abstraction infrastructure.

from ordinary file accesses, we use a special path for the RDMA “files”:

/rdma/<host>:<port>/<buf_name>[:<size_hint>]

First, a designated directory prefix (/rdma/) is provided, followed by the address
and port of the host on which the RDMA target buffer should reside (can also be
the local host). The buffer itself, as any ordinary file, carries a human-readable
name and is internally represented by a file descriptor (FD). As a last, optional
argument, the expected size of the buffer can be specified.

Buffers can either reside on the local or on a remote host. Furthermore, buffers
can be shared between several nodes and feature access restrictions (e.g., read-
only). Sharing a buffer can, for instance, be used to build a video server from
which the clients fetch data by reading from the shared buffer residing on the
server. Thanks to the performance offered by RDMA, the server load is kept
minimal (see also Chapter 6). Yet, there are no changes necessary with regard
to the client media player as it can simply access the remote buffer as if it was
an ordinary file. Another use case would be the staged processing of data where
a number of nodes are connected sequentially to build a pipeline or even 1-to-n
communication for map-reduce like processing.

Figure 3.15 depicts the implementation of our architecture which consists of
three entities, plugged in between the application and the Glibc: the file descrip-
tor (FD) manager, the server- and the client component. The FD manager is
responsible for the buffer management by using OS provided file descriptors. The
client component handles requests from the application level whereas the server

3.3. CONSUMER INTERFACES 67

h
o
s
t1

h
o
s
t2

fopen(„/rdma/host2:4711/buf0“, „w“);

‘buf0’

connect listen / accept

lookup(‘buf0’)

Application

wait for request /

process request

(a) Opening a file.

h
o
s
t1

fwrite(src, size, nmemb, stream)

ALL
OC

(siz
e)

register src MR

Application

wait for request

allocate request

RDMA Write

register dst MR

allocate reply

h
o
s
t2STag, addr

RNIC RNIC
src dst (buf0)

1

2

3

4

56

(b) Writing a non-existing file.

Figure 3.16: Examples of remote file operations.

component reacts to requests from the network, such as buffer allocation requests.
The path parser within the FD manager processes all fopen calls and differentiates
between ordinary file operations and RDMA transfers. All the other calls (target-
ing RDMA buffers) are handled by the FD lookup engine and are forwarded to
the client component. If the access is targeting a remote buffer, it is propagated
across the network, otherwise it affects local memory.

Figure 3.16 depicts two example runs of the architecture. In Figure (a), a
remote buffer, called buf0, is opened with write access on host2 and port 4711. The
path parser sees the /rdma/ prefix, creates a virtual file descriptor for that buffer
(by opening /dev/zero locally) and registers it with the FD manager. Finally, it
initiates a connection to the remote peer. The server component of the remote peer
accepts the connection request and performs a lookup of the named buffer buf0. We

68 CHAPTER 3. IWARP: RDMA OVER ETHERNET

allocate new buffers lazily which means that they are only created at first access.
Figure (b) depicts the initial write operation after having opened the “RDMA file”.
The FD lookup engine checks whether the local source buffer is already registered
as an RDMA MR and if the remote buffer has already been allocated. Since we look
at an initial write to a new buffer, none of them have been performed yet. Thus, in
the second step, the client component of the local host sends an allocation request
(indicating the size) to the server component of the remote peer. The remote peer
processes the request by creating and registering a new RDMA MR and sends back
the buffer advertisement. Now, the client component can post the RDMA Write
Work Request to the RNIC for transmitting the data. Reading a remote buffer
works analogously. This rather expensive initial buffer setup (allocation and buffer
advertisement) can be amortized by repeated data transmissions.

A similar approach to ours was suggested by Goglin and Prylli [GP03] with
their Optimized Remote Filesystem Access (ORFA). While their approach was
similar with respect to the pre-loading idea, they based their implementation on
top of a file system while we operate directly on buffers. Our approach has a lower
overhead because the buffer access is more direct. On the other hand, having a
file system provides a greater flexibility and richer feature set.

In the same spirit, Flouris and Markatos [FM99] argued on the leverage of
using remote memory as a network RAM disk. They suggested an architecture,
which created a virtual block storage device from non-used memory spread across
interconnected workstations. Even though their system was based on TCP and
not on RDMA, they could show that remote memory access was faster than local
disk access. This was used, for instance, as remote swap space. Replacing TCP
with iWARP/RDMA is likely to further improve the performance of their system.

Summary

The architecture, proposed in this section, is able to completely hide the (RDMA)
network communication behind the well-known file interface of UNIX similar to
network file systems like NFS. However, our architecture is much more lightweight
and more direct in terms of buffer access—we do not initiate data transfers using
RPC. Thanks to the buffer sharing capabilities, multiple nodes can be easily com-
bined for creating processing pipelines or map-reduce setups.18 Even though, any
application that is operating on files can use our infrastructure for remote data
exchanges without modification, the abstraction does not offer the same level of
flexibility as the previously presented iWARP library or the original OFED verbs.
In the following, we will therefore only focus on the original verbs as well as the
iWARP library.

18Mutual exclusion and synchronization mechanisms are outside the scope of this work.

3.4. IWARP IN ACTION 69

3.4 iWARP in Action

We will now go back and present the iWARP library in action: first, we show a
complete “Hello World”-like sample application and then continue with a suite of
micro benchmarks for assessing the potential of the technology.

3.4.1 The “Hello iWARP” Application

Figure 3.17 shows a simple but complete iWARP application both, from an Initia-
tor and from a Responder perspective.19 The application is split into three phases:
in the first phase (lines 1–10), the nodes establish an iWARP connection. In the
second phase (lines 11–18), the Responder performs a buffer advertisement (line
12) upon which the Initiator issues a RDMA Write into the advertised buffer (line
14) followed by an immediate RDMA Read from that buffer (line 15). In essence,
the Initiator reads back what he has just written in the preceding operation which
allows him to locally verify the correctness of the data transfers. Since the RDMA
Write and RDMA Read operations are one-sided, the Responder does not know
when the Initiator has finished the data transfers. Therefore, the Initiator signals
protocol termination to the Responder explicitly through a final Send operation
(line 17). In the last phase (lines 19–25), the buffers are deallocated and the
connection is closed.

While this protocol looks straight forward, there are a few subtle but important
details worth discussing here. Due to the asynchronous- and one-sided nature of
the interaction, designing an application protocol for RDMA-based communication
is highly error prone—particularly facing race conditions.

Send/Receive Synchronization

As mentioned earlier, each inbound Send message consumes exactly one Receive
Work Request from the Receive Queue. This implies two things: first, there must
be a Receive WR pending on the RQ when the Send message arrives. Second, the
Receive WR must reference a destination buffer which is large enough for the entire
data of the Send message. If the RQ is empty when an inbound Send message
arrives or if the referenced Memory Region is too small, the data transfer fails and
the iWARP connection is terminated—there is no second chance.

In order to prevent race conditions between inbound Sends and pending Receive
WRs, the protocol must be well synchronized. In our example, such a synchroniza-
tion can be seen on lines 11–13 at the Responder side: we post the Receive WR
targeting the control buffer (line 11) before we send out the buffer advertisement

19The error handling has been omitted.

70 CHAPTER 3. IWARP: RDMA OVER ETHERNET

iw_post_recv_adv (ctx)

iw_connect (ctx)

iw_wait_recv_adv (ctx)

iw_await_disconnect (ctx)

iw_accept (ctx)

iw_open (srv_ctx)

iw_listen (srv_ctx, ctx)

post_recv_lmr (mr_ctrl, ctx)

iw_post_send_adv (mr_buf, ctx)

iw_disconnect (ctx)

iw_close (srv_ctx)

iw_lmr_create (mr_ctrl, ctx)

iw_lmr_create (mr_src, ctx)

iw_lmr_create (mr_dst, ctx)

iw_lmr_destroy (mr_dst)iw_lmr_destroy (mr_buf)

post_write_lmr (mr_src, mr_buf, ctx)

post_send_lmr (mr_ctrl, ctx)

post_read_lmr (mr_dst, mr_buf, ctx)

iw_ctx_alloc (ctx)

iw_ctx_alloc (ctx)

iw_lmr_create (mr_ctrl, ctx)

iw_lmr_create (mr_buf, ctx)

await_completions (SQ, ctx)

iw_lmr_destroy (mr_src)

iw_lmr_destroy (mr_ctrl)

iw_ctx_free (ctx)

await_completions (RQ, ctx)

iw_lmr_destroy (mr_ctrl)

iw_ctx_free (ctx)

INITIATORRESPONDER

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

await_completions (SQ, ctx)

/* compare mr_src with mr_dst */

25:

Figure 3.17: “Hello World” on iWARP/RDMA.

3.4. IWARP IN ACTION 71

for which the Initiator is waiting (line 12). This guarantees us that the Initiator
can not issue the Send operation (line 17) before we have a Receive WR in place.

An alternative approach (for more complex protocols) would be to have a large
Receive Queue and making sure it is refilled as soon as the number of available
WRs drops below a certain threshold. Yet, that method provides no guarantee
against race conditions (e.g., on bursty data transmissions) and can be wasteful in
terms of RNIC resources, especially if a large number of QPs are handled like this
in parallel.

Waiting for Work Completions

Another important protocol design question is when to wait for Work Comple-
tions. While it is generally desirable to wait as infrequently as possible, there
is the occasional situation where the peers must be synchronized before they can
proceed. As can be seen in our protocol, we also wait for the completions of certain
operations. In the following, we elaborate on the reasons.

The Responder posts two Work Requests: a Receive (line 11) and a Send (line
12). While it does not have to wait for the completion of the buffer advertisement,
it must wait for the WC of the Receive WR in order to know when the Initiator
has completed the one-sided data transfers. As soon as it receives that WC, it can
safely terminate the connection.

Also the Initiator has to wait for some completions: first, it cannot start issuing
the one-sided operations prior to receiving the buffer advertisement (line 11) and
thus has to wait there. On the other hand, even though the Initiator reads the
remote buffer right after having written it, it does not have to wait for the RDMA
Write completion because the RDMA verbs dictate in-order delivery of the data
and processing of the requests on a single iWARP/RDMA channel. This means
that the RDMA Read Response is not processed by the Responder’s RNIC before
the RDMA Write data placement has finished which guarantees that the data
we read back is valid and corresponds to what we have written earlier. However,
prior to performing the buffer comparison, we have to wait for the RDMA Read
completion—the state of the mr dst buffer is undefined before the respective Work
Completion has been generated. We also have to wait again for the final Send
completion (line 18) or else we might prematurely deallocate the mr ctrl Memory
Region while it is still in use by the RNIC.

RDMA Protocol Design Findings

Send/Receive synchronization difficulties, like the ones mentioned, complicate RDMA
protocol design compared to TCP. Furthermore, also the one-sided RDMA Write
and RDMA Read impose certain difficulties. This explains why many application

72 CHAPTER 3. IWARP: RDMA OVER ETHERNET

Bus

L2 Cache
(4 MB)

L1i Cache
(32 KB)

L1i Cache
(32 KB)

CPU
Core 0

CPU
Core 1

L1d Cache
(32 KB)

L1d Cache
(32 KB)

L2 Cache
(4 MB)

L1i Cache
(32 KB)

L1i Cache
(32 KB)

CPU
Core 2

CPU
Core 3

L1d Cache
(32 KB)

L1d Cache
(32 KB)

Main Memory
(8 GB)

Figure 3.18: Intel Xeon cache layout.

developers are reluctant to move from the sockets interface to the RDMA verbs
despite of the performance potential. The even bigger problem of choosing an
appropriate buffer size will be addressed in Chapter 4. As we will also discuss
in that chapter, the necessary synchronization overhead can (in some situations)
even remove all the performance benefits and render RDMA useless for certain
applications.

The protocol design difficulties are not only caused by the asynchronous nature
of the queues and the one-sided communication pattern but also by the RNICs
which are a black box from the programmer’s perspective because they do not
interact with the operating system for data placement at all. The only way to
trace the data exchange, for debugging purposes for instance, is by inspecting the
packet flow on the wire of a core network component (e.g., a switch or a router)
through port mirroring—running network protocol analyzers like Wireshark on
the communicating machines does not surface anything.

3.4.2 Micro Benchmarks

Now that we understand how iWARP works, how it is integrated into the host
system and how it can be used by applications, we will look into the achievable
performance by means of initial micro benchmarks. The benchmark results provide
upper bounds for the actual performance as they were running on dedicated test
systems—there was no other load on the machines during the tests. Real-world
examples using larger applications which involve also computation and other tasks
are presented and discussed in the second part of this thesis. Yet, in order to
estimate the potential, the micro benchmarks serve as useful indicators.

Test Environment

Our testbed consists of an IBM BladeCenter containing HS21 BladeServers. Each
of them is equipped with a quad core Intel Xeon CPU running at 2.33 GHz, 32 KB

3.4. IWARP IN ACTION 73

0

2

4

6

8

10

1B 1KB 1MB 1GB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
it

/s
]

RDMA Write

RDMA Read

Send

8KB

Figure 3.19: Direct comparison of all RDMA operations. While RDMA Read and
RDMA Write perform slightly better for small buffers, the difference vanishes for
large buffers.

L1 data cache and 32 KB L1 instruction cache, 4 MB unified L2 cache and 8 GB
of main memory (see Figure 3.18).

RDMA hardware support is provided by Chelsio T3 RNICs (S320EM-BCH)20

which offer full TCP/IP offloading (TOE) and iWARP RDMA support. The
RNICs are interconnected through a Nortel 10 Gb Ethernet Switch Module.21

The BladeServers are running Fedora Core 9 with a 2.6.24 vanilla kernel. The
OpenFabrics Enterprise Distribution (OFED v1.3.1) software stack [ofe] serves as
OS interface to the RDMA subsystem. Unless stated otherwise, the tests are all
based on our iWARP library and not on the plain OFED verbs. A comparison
between the verbs and the library is provided as well.

RDMA Operation Comparison

We run three sets of benchmarks: one for each operation type supported by
iWARP/RDMA (Send/Receive, RDMA Write, RDMA Read). In each set, we per-
form a unidirectional bulk data transfer between two nodes. The data is transferred
in messages of sizes between 1 Byte and 1 GB. Figure 3.19 shows the throughput
measured on the application level for the three operations.

In accordance with Bell et al. [BBC+03], we find that the underlying 10 Gi-
gabit link can only be fully utilized when transferring the data in large enough

20http://www.chelsio.com/assetlibrary/products/S320EM-BCH Product Brief.pdf
21http://www.bladenetwork.net/BNT-Virtual-Fabric-10G-Switch-Module.html

74 CHAPTER 3. IWARP: RDMA OVER ETHERNET

messages.22 The reason for that is on one hand the reduced interaction between
the application and the RDMA subsystem because shipping the data in larger
chunks requires fewer Work Requests to be posted to the Send Queue. On the
other hand, the cost for processing small messages is dominated by the per-packet
rather than the per-byte cost which renders small data exchanges inefficient. As
we will discuss in the subsequent chapter, RDMA is only beneficial for large data
transfers—for small ones, TCP is often preferable.

Figure 3.19 further shows that the performance of all operations is roughly
equal—except for the band between 128 B and 4 KB where the RDMA Write
performs best, followed by the RDMA Read and finally the Send operation. The
important implication from this result is that the operation to be used for an
application protocol can be chosen based on the desired semantic only (one-sided
or two-sided; push-based or pull-based).

Figure 3.20 shows the throughput for each individual operation and includes
the CPU load induced on the node issuing the Work Requests. The CPU load
measurements were conducted using OProfile [opr]. We have chosen the scale to
range from 0 to 400 % to reflet the 4 cores available in the systems. Figure 3.20(a)
depicts the result of the two-sided Send/Receive communication. It can be seen,
that the CPU load is low for small messages (≤ 7 %) and negligible for large mes-
sages. The CPU load for small messages is a result of the frequent Work Request
posts by the application. The load on the receiving node is roughly equal to that
of the sender because the processing overhead is essentially the same. The RDMA
Write benchmark result is not only in terms of throughput but also in terms of
CPU load almost equal to the Send/Receive benchmark (see Figure 3.20(b)). How-
ever, the CPU load on the receiver is negligible in all cases because the entire data
placement is performed in hardware. Surprisingly and in contrast to the other
two operations, the RDMA Read fully occupies one of our cores at the issuing side
(the responder is idle). The reason for this observation is a shortcoming within the
current version of the Chelsio T3 chip used in our setup: there is no support for
unsignaled RDMA Read Work Requests. To minimize the interaction between the
application and the RDMA subsystem, we let the RNIC generate a Work Com-
pletion only every n operations (with n being as large as possible; maximal 16384
in our case). In practice, this means that we set the signaled flag of the Work
Request to 0 for the first n − 1 operations and to 1 for the final one. By waiting
for this last Work Completion, we are (by definition of the verbs) guaranteed that
all the previous operations have completed as well. However, this is not possible
with RDMA Read yet—there, every operation generates a Work Completion which
results in an extensive interaction between the application and the RDMA subsys-
tem. Furthermore, appending Work Completions to the Completion Queue within

22In our setup, the minimal message size required to saturate the link is about 8 KB.

3.4. IWARP IN ACTION 75

0

2

4

6

8

10

1B 1KB 1MB 1GB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
it

/s
]

0

100

200

300

400

C
P

U
 L

o
a
d

 [
%

]

Throughput

Issuer Load

(a) Send/Receive

0

2

4

6

8

10

1B 1KB 1MB 1GB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
it

/s
]

0

100

200

300

400

C
P

U
 L

o
a
d

 [
%

]

Throughput

Issuer Load

(b) RDMA Write

0

2

4

6

8

10

1B 1KB 1MB 1GB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
it

/s
]

0

100

200

300

400

C
P

U
 L

o
a
d

 [
%

]

Throughput

Issuer Load

(c) RDMA Read

Figure 3.20: iWARP/RDMA micro benchmark. Transferring bulk data between
two peers using all the available RDMA operations. RDMA performs best when
using large messages (≥ 8 KB).

76 CHAPTER 3. IWARP: RDMA OVER ETHERNET

the subsystems seems to be a comparably expensive task: waiting for n Work
Completions and reaping them all in one go did not bring down the CPU load
significantly. According to the verbs specification, RDMA Read operations must
be able to complete unsignaled—Chelsio has announced support for unsignaled
RDMA Read operations in their new T4 chip. Using only signaled Work Requests
results in a comparably high CPU load also for Send/Receive and RDMA Write.
The important message here is that being able to pipeline RDMA data transfer
operations and only wait for a completion after a certain (perferably large) number
of operations is vital for achieving a low host processing load on the node issuing
the operations.

In summary, the benchmarks have revealed the following:

1. In order to fully utilize the available bandwidth at negligible host processing
overhead, the data must be exchanged in chunks of a (system-dependent)
minimal size (≥ 8 KB in our setup).

2. All three data transfer operations offered by iWARP (Send/Receive, RDMA
Write, RDMA Read) perform very similar in terms of CPU load and achiev-
able application throughput (except for a small band where the RDMA Write
and RDMA Read perform better; between 128 B and 4 KB in our setup).
Hence, the choice of operation to be used can be made entirely on the most
appropriate application semantic.

3. Work Requests should be posted unsignaled whenever possible because the
production and consumption of Work Completions is work intensive and
eliminates precious CPU cycles which could be spent on application process-
ing otherwise.

iWARP Library Overhead

While the above experiments were all based on our iWARP library presented in
Section 3.3.3, we need to compare the results with the plain OFED verbs.

As can be seen in Figure 3.21, there is no significant difference in either the
CPU load or the achieved throughput between the plain verbs and our library. The
chart only shows the result for the RDMA Write benchmark but we have found
the same also for Send/Receive and RDMA Read. In particular, the high CPU
load due to the missing support for unsignaled RDMA Read operations is not a
consequence of the library. In the following, we hence restrict our experiments and
applications to be based on the library due to the easier and faster development.

3.4. IWARP IN ACTION 77

0

2

4

6

8

10

1B 1KB 1MB 1GB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
it

/s
]

0

100

200

300

400

C
P

U
 L

o
a

d
 [

%
]

TP Library

TP Verbs

CPU Library

CPU Verbs

Figure 3.21: Direct comparison of the RDMA Write benchmark running on top of
the iWARP library and on plain OFED verbs. There is no significant difference—
neither in CPU load nor in achieved throughput.

0

2

4

6

8

10

1B 4B 16B 64B 256B 1KB 4KB 16KB 64KB 256KB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
it

/s
] HW - HW

HW - SIW

SIW - SIW

Figure 3.22: Throughput of Softiwarp (SIW) compared to the Chelsio RNIC (HW).

78 CHAPTER 3. IWARP: RDMA OVER ETHERNET

Softiwarp

Figure 3.22 shows the throughput measured with a preliminary version of Soft-
iwarp on the same setup as before.23 The benchmark was run in two different
configurations. The first configuration (SIW - SIW) uses Softiwarp on the sender
as well as on the receiver. In the second configuration, we have replaced Softiwarp
by an RNIC on the sender (HW - SIW)—this reflects a mixed setup like the one
used for the HD media dissemination system presented in Chapter 6. The third
configuration (HW - HW) is added as reference.

It is obvious that Softiwarp does not achieve the same performance as a pure
RNIC-based configuration. Yet, it provides a throughput which is high enough for
1-to-n configurations where the numerous clients only require a (potentially small)
fraction of the total bandwidth. The mixed configuration performs slightly better
than the one using Softiwarp on both sides. The SIW - SIW configuration does
not provide a performance advantage but might be useful for preliminary iWARP
application development and testing on machines which are not (yet) equipped
with an RNIC.

There are two more details worth mentioning: first, the minimum message size
required to reach the peak throughput is larger with Softiwarp than with RNICs—
this must be considered when designing communication protocols for mixed setups.
Second, the CPU load of the ’passive’ host in one-sided Softiwarp operations is
roughly equal to the one issuing the operations because there is no RNIC to handle
the data transfer (load is not shown in the chart).

3.5 Summary

In this chapter, we have illustrated the enablement of RDMA over Ethernet with
a bottom-up approach. After having described the iWARP protocol stack stan-
dardized by the IETF, we have motivated and presented our Wireshark network
analyzer extension allowing the visualization of the iWARP traffic on the wire. We
have then outlined the host system integration of iWARP/RDMA at the example
of the OpenFabrics stack and introduced Softiwarp, our kernel module to enable
RDMA on hosts which only feature a plain Ethernet NIC. In the context of the
interface offered to the verbs consumer, we have argued about the issues of the
OFED verbs and proposed a simplified iWARP library which allows an easier and
less frustrating start into the world of RDMA application development. Further-
more, we have studied the file abstraction as an alternative interface to completely
hide the RDMA communication. Finally, we have demonstrated iWARP in action
by means of a “Hello World”-like example application as well as through a set of

23We restrict the discussion to RDMA Write because the other operations perform similarly.

3.6. OUTLOOK 79

micro benchmarks that give an initial idea of the performance potential and some
limitations of the technology at hand.

3.6 Outlook

With iWARP, RDMA does no longer depend on special purpose (mostly propri-
etary) infrastructures like InfiniBand but can be used on the ubiquitous IP suite.
iWARP, together with Softiwarp, enables on one hand RDMA for new application
domains (e.g., HD Media Dissemination, Chapter 6) and on the other hand allows
HPC applications to run on Ethernet fabrics. In the following, we will explore
the parameter space in which iWARP/RDMA is most beneficial with another set
of micro benchmarks before we assess the performance potential on real world
applications in Part II of this thesis.

80 CHAPTER 3. IWARP: RDMA OVER ETHERNET

4
The Hidden Cost of iWARP/RDMA

So far, we have motivated iWARP/RDMA, discussed its inner workings and ex-
plained how it is used by the application programmer. It is now time to present
an in-depth analysis of iWARP/RDMA in practice and identify its hidden costs
and pitfalls. Subsequently, we propose optimizations which preserve the benefits
of RDMA even under “difficult” circumstances. Finally, taking our findings and
optimizations into account, we specify a set of critical parameters which need to be
considered in order to assess the benefit of iWARP/RDMA for given application
domains.

4.1 Introduction

In Chapter 2 we have motivated and presented RDMA: a mechanism whereby
data is moved directly between the application memory of the local and remote
computer. In bypassing the operating system, RDMA significantly reduces the
CPU cost of large data transfers and eliminates intermediate copying across buffers,
thereby making it attractive for implementing distributed applications. With the
advent of hardware implementations of RDMA over Ethernet (iWARP; Chapter 3),
its advantages have become even more obvious.

When we have started to write benchmarks and applications involving RDMA
communication, we realized that there are environments where RDMA cannot pro-
vide the expected performance advantage over TCP. In this chapter we therefore
analyze the applicability of RDMA in practice and identify hidden costs in the

81

82 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

setup of its interactions that, if not handled carefully, remove any performance
advantage, especially in hardware implementations. From an application point
of view, the major difference to TCP/IP based communication is that the buffer
management has to be done explicitly by the application. Without the proper
optimizations, RDMA loses all its advantages. We discuss the problem in detail,
analyze what applications can profit from RDMA, present a number of optimiza-
tion strategies, and show through extensive performance experiments1 that these
optimizations make a substantial difference in the overall performance of RDMA
based applications.

4.1.1 Problem Statement

An important differences, which is often underestimated [DW07a], between RDMA
and operating system driven TCP/IP communication, is that the application has
to explicitly manage the memory segment(s) that will be used as communication
buffer(s) at runtime. The application has to preregister certain parts of its memory
with the RDMA subsystem as source and/or destination buffers before the data
transfers. During registration, the memory pages get pinned by the OS making
sure they stay resident and cannot be swapped out to disk. The pinned pages are
then registered with the RNIC so that it can access them using DMA operations
which eliminates the need for OS callbacks and intermediate buffering during the
transfers (cf. Chapter 2).

MR registration happens through the resource management path which re-
quires kernel activity and therefore induces a delay as well as a non-negligible CPU
load. Even though the expensive data copy operations are avoided with RDMA,
creating too much traffic on the resource management path can render RDMA
useless. This is particularly true for the explicit buffer management with appli-
cations that are not able to reuse their buffers. In this chapter we show that the
management of these user space communication buffers is crucial to implementing
efficient RDMA communication.

We address the open question to what extent the hidden memory management
costs affect the performance of RDMA. Our experiments show that, even for data
transfers of moderate size, these hidden costs can completely eliminate the per-
formance advantage of RDMA. We further present the critical parameters such as
the increased connection setup time or the more expensive and complex RDMA
object management that need to be considered when assessing the value of RDMA
for any application.

1All the experiments presented in this chapter are based on the original OFED API and
library—not on our simplified iWARP library presented before.

4.2. RDMA BACKGROUND 83

4.1.2 Contributions

In this chapter we describe the hidden costs of RDMA and show in detail how to
design applications such that they take full advantage of RDMA. We also use our
results to characterize which applications are likely to benefit from RDMA.

The contributions of this chapter are three-fold.

� First, we provide extensive performance experiments that show the hidden
costs of RDMA and compare them with the potential advantages.

� Second, we describe cost-effective memory management strategies for RDMA
and demonstrate their feasibility and performance with experiments on the
Chelsio RNIC over 10 Gigabit Ethernet.

� Third, we present a list of the critical parameters based on which the added
value of RDMA can be assessed.

4.1.3 Chapter Overview

The chapter is structured as follows: Section 4.2 briefly revises the RDMA mecha-
nisms which are relevant in this context. Section 4.3 continues with the promised
cost analysis for establishing an RDMA data path which includes the connection
setup and buffer registration. Optimization strategies based on this analysis are
presented in Section 4.4 before we summarize and present a raster for assessing
the potential of iWARP/RDMA for given applications in Section 4.5.

4.2 RDMA Background

iWARP/RDMA was discussed in the previous chapter and is described in full
detail in the RDMA Verbs Specification [HCPR]. In here, we focus only on the
aspects that are relevant for our purposes in this chapter.

4.2.1 Asynchronous Communication Interface

In contrast to the classical TCP/IP semantics, all RDMA operations are exe-
cuted asynchronously. They are described by the application in terms of Work
Requests (WR) which are posted to the Work Queues for asynchronous process-
ing by the RNIC. Since posting a WR is nonblocking and since the actual data
transfer described in the WR is handled by the RNIC without CPU involvement,
the application can overlap communication with computation. RDMA might be
of limited use for an application that cannot profit from this.

84 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

4.2.2 RDMA Data Transfer Operations

The data transfer operations offered by RDMA are the two-sided Send/Receive as
well as the one-sided RDMA Read and RDMA Write.

For the two-sided operations, the sending application specifies the buffer from
which the data to be sent must be taken by posting a Send WR and the receiving
application at the other side decides where to place the inbound data by posting a
Receive WR in advance. In the case of one-sided operations, on the other hand, the
RDMA Write copies data from a local MR into a remote one whereas the RDMA
Read does the opposite without involvement of the remote host. Asynchronous
notification about completion of the local Work Request can be demanded for all
operations.

The following list presents peculiarities of the above RDMA operations which
limit their applicability in certain cases:

� they are executable only on explicitly preregistered buffers

� the receiver of an inbound Send message needs to know the size of the in-
bound data in order to have an appropriate target buffer ready

� one-sided operations require knowledge of the remote buffer which necessi-
tates a prior advertisement

� reregistration of a buffer requires a readvertisement inducing protocol delay

� the remote side of a one-sided operation cannot implicitly be notified of the
completion of an operation

4.2.3 Explicit Buffer Management

Applications based on TCP/IP assume implicit communication buffers provided
by the OS. The flexibility of that approach comes with the major drawback of
requiring intermediate buffer copies, which induce a significant CPU and memory
bus overhead as discussed in Section 2.1. The RDMA model on the other hand
requires the application developer to allocate his communication buffers (or Mem-
ory Regions, MRs) explicitly and to register them with the RNIC for hardware
accelerated direct data placement using DMA. Once registered, an MR has a fixed
size which can only be changed by deregistering it and thereafter registering the
buffer as a new MR. Since the registered MRs block the underlying memory for
other applications, they should be deregistered when they are no longer needed.
As we will see later in this chapter, MR (de-)registration induces a significant
overhead. Applications that cannot reuse their communication buffer(s) therefore
lose a significant performance advantage.

4.3. IWARP/RDMA COST ANALYSIS 85

OS

USER

KERNEL

HW

OS

M
E
M

M
E
M

APP

RNIC

APP

RNIC

A A

B B

Local Host Remote Host

Network

Figure 4.1: Data path for a network transfer bypassing the OS. The data travels
directly between the network and the application buffer (A) as well as across the
fabric between nodes (B).

4.3 iWARP/RDMA Cost Analysis

When looking at a network data transfer from a high-level perspective, the data
path can be divided into two parts: First, the data is moved locally from the
application buffer onto the wire (part A in Figure 4.1). In a second step, the data
is transferred across the network (part B) to the remote host where it is moved
into the destination buffer of the application.

The performance advantages of RDMA appear only after the whole path is
established (A–B–A of Figure 4.1) and does not need to be changed anymore.
In the case of iWARP/RDMA, establishing this data path involves setting up an
iWARP connection between the nodes followed by the creation of the respective
communication buffers (MRs) on each side. Both of these two steps are initialized
through the resource management path across the kernel which is what makes
them expensive.

Hence, for an application to profit from RDMA, it has to be able to reuse its
buffers during operation. However, such reuse is only possible if the application
can be designed to output all its data directly to that fixed user virtual memory
address interval where the MR is situated. Furthermore the data set must always
be of the same size or else either memory is wasted (new data set is smaller) or the
transfer fails because the MR is not large enough (new data set is larger). If this is
not possible, the application must either copy the data locally into an existing MR
(Figure 4.2(a)) or register a new MR on the data (Figure 4.2(b)). Our experiments
in this section indicate that only a combined approach is able to keep the overhead
low. We use the same setup as described in Section 3.4.

86 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

MR

MR

MR

RNIC

Application 1

copy
d
a
ta

M
R

(a) Copy the application output data into an existing MR.

MR

MR

MR

RNIC

Application 2

n
e
w
 M
R

d
a
ta

register

(b) Register a new MR with the RDMA subsystem that fits
the application output data.

Figure 4.2: Preparing application output data for RDMA transfer. In the case
where the output cannot be directly steered into an existing Memory Region (MR),
it either has to be copied into an existing MR or a new one has to be registered.

4.3. IWARP/RDMA COST ANALYSIS 87

1 B 1 KB 1 MB 1 GB

obj create 2 ms 2 ms 2 ms 2 ms
buf create 0.05 ms 0.07 ms 0.52 ms 565 ms
connect 201 ms 201 ms 201 ms 771 ms
send data 0.03 ms 0.04 ms 0.87 ms 869 ms
disconnect 10 µs 10 µs 10 µs 10 µs
buf destroy 0.03 ms 0.04 ms 0.23 ms 110 ms
obj destroy 0.06 ms 0.06 ms 0.06 ms 0.06 ms

total 203.17 ms 203.21 ms 204.68 ms 2317.06 ms

Table 4.1: Breakdown of the processing steps required for transferring n bytes
of payload over iWARP/RDMA including the connection establishment and tear-
down.

4.3.1 RDMA Setup

Before remote DMA access is even possible, an elaborate connection setup follow-
ing the creation of a number of RDMA objects is necessary (see Chapter 3). In
order to assess the overhead compared to a simple TCP handshake, we have mea-
sured the time-to-first-byte—the time it takes for a client to connect to a server and
send one byte of payload. On our link (round-trip time (RTT) of 25 µs) we have
found a time-to-first-byte of 203 ms for RDMA and a mere 0.1 ms for TCP/IP.2

A factor of two thousand. In the following, we analyze the cost of the individual
steps required to exchange data over iWARP/RDMA in order to understand where
this difference comes from.

For that, we have extended the time-to-first-byte experiment and transferred
different amounts of data between 1 Byte and 1 Gigabyte (we call this experiment
time-to-nth-byte). Table 4.1 shows the breakdown of the individual steps of the
time-to-nth-byte experiment. The individual steps reflect the following tasks on
the application level of the initiator side:

obj create. Creation of the following iWARP/RDMA objects: Connection Man-
agement ID, Event- and Completion Channels, Protection Domain, Completion
Queue and Queue Pair.

buf create. Allocation of the data buffer (malloc) followed by its registration with
the RNIC as well as creating the Send Work Request. This step will be discussed
in detail in the following sections.

connect. Setting the connection parameters, issuing an MPA connection request
and waiting for the connection established notification.

2Reading the clock induces an overhead of 0.14 µs which is negligible unless stated otherwise.

88 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

send data. Posting the Send Work Request onto the Send Queue of the RNIC and
waiting for its Work Completion.3

disconnect. Issuing an iWARP/RDMA disconnect down call to the RDMA sub-
system in the kernel.

buf destroy and obj destroy. Deregistering and freeing the data buffer and destroy-
ing the RDMA objects created at the beginning.

By looking at the total time elapsed for exchanging n bytes of data, we real-
ize that up to 1 MB, the connection establishment is clearly the dominant cost.
For 1 GB, the actual data transfer is more expensive.4 We infer from this that
iWARP/RDMA is only beneficial once a certain total amount of data is being
transferred. Furthermore, as we have shown in the previous section, the buffers to
be transferred must exceed a system-dependent minimal size to saturate the link;
otherwise the per-packet rather than the per-byte costs prevail. This is confirmed
again here by the send data values.

We have seen now that the connection setup itself is what causes the large time-
to-first-byte. However, we have not uncovered the reason for it. We therefore time
the individual steps of the connection establishment process from an application
point of view. These are: setting the connection parameters (negligible), issuing
the iWARP/RDMA connect call down to the subsystem (0.03 ms) and waiting
for the connection established notification (201 ms). The last (and dominating)
step includes the remote side buffer- and object creation and issuing the accept
call (2.1 ms all together), the MPA handshake on the wire as well as moving the
RNICs from TCP/IP mode into iWARP/RDMA mode. By packet analysis on
the wire (using Wireshark), we have found the handshake and RTT delay to be
negligible (in the order of TCP). However, moving the adapter into iWARP mode
takes about 100 ms on each side which results in a total of the observed 203 ms.

In summary, our findings show that RDMA is clearly a bad fit for any applica-
tion using many short-lived connections due to the comparably large connection
setup cost.

4.3.2 Memory Region (De-)Registration

In our next experiment, we have identified the cost for registering and deregistering
RDMA Memory Regions of different sizes.

3This does not mean that the remote application has seen a Work Completion for the Receive
Work Request. It only guarantees that the remote RNIC has received, placed and acknowledged
the data.

4We observe a higher connection cost for 1 GB because it includes the object- and buffer
creation at the remote end which is a consequence of the API and our communication protocol.

4.3. IWARP/RDMA COST ANALYSIS 89

Function mr_bench(min, max): Memory Region registration benchmark.

for buf size = min to max do1

/* map main memory */

buffer = mmap(buf size);2

/* time the memory registartion */

t start = clock_gettime(CLOCK REALTIME);3

mr = ibv_reg_mr(protection domain, buffer, buf size, access rights);4

t diff = clock_gettime(CLOCK REALTIME) - t start;5

report(t diff);6

/* deregister and unmap the memory again */

ibv_dereg_mr(mr);7

munmap(buffer, buf size);8

end9

Our benchmark core is sketched as pseudo code in the above listing. The MRs
are registered on line 4. In our OpenFabrics RDMA subsystem, they are managed
by the OFED user space library in a balanced search tree (red-black tree). When
calling ibv_reg_mr(), a new MR reference is created and added to the tree. After
that, the code traps into privileged mode where the user pages are mapped into the
kernel virtual address space. In the next step, the underlying physical pages are
allocated and pinned in main memory as necessary. Last, the page addresses are
translated into bus addresses which are then registered with the RNIC for DMA.

Figure 4.3 shows the time required for registering Memory Regions of sizes
between 1 B and 2 GB on a doubly logarithmic scale. As can be seen, the MR
registration cost is constant up to and including 4 KB (page size) and increases
linearly with the size of the MR (number of pinned pages) after that. The constant
overhead for small buffers results from the rather long code path described above.
After 4 KB, the dominating costs are page table lookups, walking and updating
the involved data structures, translating the addresses and the like.

Since all the pages of the new MR must be pinned, they first need to be resident
in physical memory. In the worst case, this means that each page of the MR causes
a page fault (dashed line in Figure 4.3). To find out how much weight these page
faults5 carry in the context of MR registration, we have conducted a second test
series with MRs whose underlying pages were already resident in physical memory
before registration (marked with triangles in Figure 4.3). Beyond the size of a page,
registering Memory Regions on pages which are not resident becomes significantly

5We only consider the cost of installing the page mapping. Potential disk I/O, in case the
data has been swapped to disk, is not taken into account.

90 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s
]

1

10

100

1,000

10,000

100,000

1,000,000

#
 P

a
g

e
 F

a
u

lt
s

register (pages not resident)

register (pages resident)

deregister

page faults

Figure 4.3: MR (de-)registration costs for resident as well as non-resident pages.
Small buffers incur a constant overhead while large ones cause an overhead linear
to the number of underlying pages. Deregistration is cheaper than registration for
all sizes.

more expensive than registering an MR on resident pages. At a size of about 2 MB,
the difference reaches almost an order of magnitude.

Huge pages can be used to reduce the total number of pages required to back a
Memory Region of a given size. Since the overhead of registering a Memory Region
increases with the number of pages involved, we expect to see a cost reduction
when using pages of size 2 MB rather than the standard 4 KB. Our experiments
have shown a reduction of the registration cost of up to 40% as compared to the
standard page size (not shown in the chart). This is only true for Memory Regions
which are larger than the size of a huge page, of course. However, the use of huge
pages is not generally applicable.

Deregistration is a slightly simpler, inverse version of the registration code path.
Since the pages of registered MRs are always pinned, page residency is not an issue
here. As expected, Figure 4.3 shows that deregistration is significantly faster than
registration (for all sizes). The explanation for this is that there is no need for
address translations and that unpinning the pages is cheaper than pinning them.
Up to and including 128 KB, the deregistration time is constant at ∼15 µs. For
larger MRs, the time increases linearly with the buffer size as well. As pointed out
before, deregistration of MRs which are no longer used is vital for system resource
management because the underlying physical memory is pinned and not available
for other processes.

We conclude that (de-)registering MRs induces a non-negligible hidden cost in
terms of CPU load as well as delay and thus has a negative impact on the overall

4.3. IWARP/RDMA COST ANALYSIS 91

1

100

10,000

1,000,000

100,000,000

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s

]

register (pages not resident)

register (pages resident)

deregister

Figure 4.4: Softiwarp shows the same registration cost trend as the RNIC.

application performance. Yet, it is necessary for RDMA communication.

The Case for Softiwarp

While the above measurements were all taken on the Chelsio T3 RNIC, we will
briefly review the results for the software-only iWARP solution: Softiwarp.

Figure 4.4 shows that the memory registration cost of Softiwarp follows the
same trend as the one for the RNIC. There is a constant overhead for small buffers.
After a certain size, the cost increases linearly with the number of involved pages.
Again, registering buffers whose underlying pages are not yet resident are more
expensive than the ones whose pages are installed. Furthermore, deregistration is
always faster than registration.

Figure 4.5 compares the outcome of the three experiments one-on-one with
the results from the RNIC. It can be seen that the registration cost on Softiwarp
is slightly lower than the one for the RNIC. While the OFED MR management
cost is incurred for both, Softiwarp does not involve any communication with the
hardware which makes not only registration but also deregistration faster.

In the case of registering a buffer on non-resident pages, the page fault handling
prevails for large Memory Regions resulting in an equal cost for Softiwarp and the
RNIC (Figure 4.5(a)). A similar effect is visible for the deregistration experiment:
for larger pages, the costs are roughly equal. When the pages are installed before
the registration, however, the cost difference persists for all buffer sizes.

92 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

1

100

10,000

1,000,000

100,000,000

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s
]

RNIC

Softiwarp

(a) MR registration causing page faults.

1

100

10,000

1,000,000

100,000,000

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s

]

RNIC

Softiwarp

(b) MR registration on resident pages.

1

100

10,000

1,000,000

100,000,000

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s

]

RNIC

Softiwarp

(c) MR deregistration.

Figure 4.5: Memory Region (de-)registration cost of Softiwarp compared to the
cost incurred on the RNIC.

4.3. IWARP/RDMA COST ANALYSIS 93

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s

]

copy (pages not resident)

copy (pages resident)

Figure 4.6: Memory copy costs for resident and non-resident pages. Constant cost
for buffers up to half a page size (2 KB in our setup); linear increase for larger
buffers.

4.3.3 Memory Copying

Having an application that cannot steer its output into an existing MR (e.g.,
coming from a mapped file) forces us to either register a new MR on the data
(see previous section for the cost analysis) or copy the data into an existing MR
if we want to use RDMA. We now consider the second option (copying). For
that, we measure the pure copy performance of memcpy() on the same buffers as
before, once with the pages resident in main memory and once causing page faults.
Figure 4.6 displays the results of our experiments where the buffer size indicates
the amount of data being copied.

Since memcpy() is a highly optimized function with a short code path, it has a
very low overhead for buffers smaller than a page—the delay measured is actually
dominated by the timer here. In our setup, up to 2 KB can be copied in under 1 µs
which is about two orders of magnitude faster than MR registration. For buffers
larger than 2 KB we see a picture which is similar to MR registration: The time
increases linearly to the amount of bytes copied. As we will explore in Section 4.4,
copying large buffers is significantly slower than registering them as new MRs.
Page residency is also important for memcpy() but the performance improvement
on large buffers is not as dramatic as in the case of MR registration.

Since memcpy() does not involve the RNIC, we expect its performance to be
strongly dependent on the CPU as well as on the page size and cache sizes. Fig-
ure 4.7 confirms that for various systems. On an older Intel P4 1.8GHz, the copy
delay is much larger than on a more recent Intel Xeon 2.66GHz for all buffer sizes.

94 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s
]

Intel P4 1.8GHz, 256KB L2 Cache

Intel P4 2.66GHz, 512KB L2 Cache

Intel Core 2 1.86GHz, 2MB L2 Cache

Intel Xeon 2.33GHz, 4MB L2 Cache

Intel Xeon 2.66GHz, 6MB L2 Cache

Figure 4.7: Memory copy performance on different systems. There is a strong
correlation between the host processor speed and the copy performance.

4.4 Optimization Strategies

Based on our findings we now present several optimization strategies that reduce
the overhead of RDMA communication.

4.4.1 Respect the Critical Buffer Size

In the case where we cannot steer our application output into an existing MR,
we must either register the application output buffer as a new MR by means of
ibv_reg_mr() or copy its content into an existing MR of appropriate size using
memcpy() (see Section 4.3). Both approaches were used out of the box (i.e., no
on-machine tuning was performed).

Figure 4.8 compares the delay of these two options and shows that MR registra-
tion has a significant overhead for small Memory Regions (<256 KB) as compared
to memcpy() (up to several orders of magnitude!). After 256 KB however, it is
much more efficient to register a new MR than it is to copy the application out-
put. At about 4 MB (size of L2 cache), the delay difference reaches almost an
order of magnitude in favor of the registration.

Furthermore, copying always induces 100% CPU load, whereas a reregistration
(deregistration followed by registration) induces between 60% and 75% due to the
additional hardware I/O wait time.

This leads to our first optimization: If buffer reuse is not possible but RDMA

4.4. OPTIMIZATION STRATEGIES 95

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

1B 1KB 1MB 1GB

Buffer Size

T
im

e
 [

u
s

]

register (pages resident)

copy (pages resident)

critical

buffer size

(256KB)

RTT

Figure 4.8: MR registration VS. copying with resident pages. While copying is
significantly faster than MR registration for small buffers (below the critical buffer
size), it is up to an order of magnitude slower for large buffers.

is still desired, buffers smaller than the critical size ought to be copied into existing
MRs and larger buffers must be reregistered. Copying a large buffer (>2 MB in
our case) is not only a lot slower than registering a new MR on it but it also
consumes all the available CPU cycles and induces a higher load on the memory
bus. In terms of cache pollution, registration is also preferred because it does
not touch the data. As we will discuss later, this optimization matches typical
communication buffer usage.

The important question now is what determines this critical size where regis-
tration outperforms copying. The answer is two-fold. The first aspect is the CPU
performance: Since memcpy() is more CPU intensive than ibv_reg_mr(), running
the above experiments on a slower CPU decreases the copy performance compared
to registration, which results in a shift of the critical size towards smaller buffers.
The second aspect which is even more serious is the page residency. Figure 4.9
shows that the registration of nonresident pages outperforms copying already for
buffers larger than 32 KB which is a shift in favor of ibv_reg_mr() by a factor of
8. Using huge pages does not have a significant influence on the critical size as the
cost reduction for memcpy() is about the same as for ibv_reg_mr(). When using
Softiwarp rather than the RNIC, the critical buffer size also shifts towards smaller
buffers (16 KB) because MR registration is faster on Softiwarp than on the RNIC,
as shown before.

96 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

1B 1KB 1MB 1GB
Buffer Size

T
im

e
 [

u
s

]
register (pages not resident)

copy (pages not resident)

RTT

32KB

Figure 4.9: MR registration VS. memcpy with nonresident pages.

4.4.2 Overlap Buffer Management with Communication

The second optimization is to amortize the MR (de-)registration cost by overlap-
ping it with waiting for a message from the remote host. The dotted horizontal
line in the previous figures marks the round-trip time (RTT) between two RNICs
through our 10 GbE fabric (∼25 µs). It is a coincidence of our test system that
the RTT is almost equal to the constant cost for registering small MRs—MR reg-
istration does not involve network communication. We can register a buffer on
resident pages of up to 64 KB (or 8 KB in case of nonresident pages) within the
RTT without inducing an overall protocol delay. MRs of up to 1 MB can be dereg-
istered during RTT. The 64 KB for registration and 1 MB for deregistration are
pessimistic lower bounds since our RTT does not take into account any application
processing delay which typical real world protocols have.

4.4.3 Register Buffer on Resident Pages

Our third optimization is to design RDMA-based applications such that they reg-
ister their MRs shortly after having touched or created the data—especially if they
encompass more than one page—which reduces the expensive page fault processing
during registration and therefore reduces the registration time by up to an order
of magnitude. This also allows larger MRs to be registered during RTT.

4.4. OPTIMIZATION STRATEGIES 97

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

16MB 32MB 64MB 128MB 256MB 512MB 1GB

Buffer Size

T
im

e
 [

u
s

]

4 times 1 MR

4 MRs

1 MR

4 times 1 MR (pages resident)

4 MRs (pages resident)

1 MR (pages resident)

Figure 4.10: Parallel MR registration.

4.4.4 Parallel Buffer Registration and Applicability

Today, most machines are equipped with several CPUs and/or several cores. The
question arises whether MR registration can benefit from that. Figure 4.10 depicts
the latency for registering 4 MRs in parallel (one on each core). Again, we look at
the case where the pages are resident (marked with triangles) and compare it with
the one causing page faults. The dotted lines on top serve as reference showing the
delay for sequential registration of the MRs on a single core and the solid lines at
the bottom reflect the cost for registering a single MR. When comparing sequential
with parallel MR registration, it is evident that the parallel registration can only
profit from multiple cores when the pages are resident. Otherwise it is almost as
expensive to register four MRs in parallel as it is to register them one after the
other. We have found that the reason for this is the limited overall page fault rate
of the system. Another motivation for the application to make sure the pages are
resident before registration.

4.4.5 Suitability of the Optimizations

We now show why the proposed buffer management optimizations fit well with
regard to real world protocols.

Large buffers typically contain the actual application data and are highly vari-
able in size. Registering these large buffers as MRs, renders an equally large
amount of the physically available main memory unusable for other processes due
to the pinning requirement of RDMA buffers. Hence they should be deregistered
when they are no longer needed. This matches our finding of reregistration being

98 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

cheaper for large MRs than copying.
Small buffers on the other hand are often used for exchanging control messages

of constant size. By keeping them registered as MRs and refilling them with
memcpy(), we induce a significantly lower delay and do not waste much memory
even if they are currently unused. Since communicating hosts are often waiting for
some kind of control messages from their peers before they can proceed with the
protocol, it is vital that the delay for shipping these messages is low in order to get
an efficient overall data exchange. An alternative approach is to transport these
small control messages using plain TCP/IP but that results in the loss of packet
ordering guarantees because of the extra socket which is undesirable in most cases.

Our experimental evaluation demonstrates clearly that a straight-forward ex-
plicit Memory Region management can degrade the overall application perfor-
mance dramatically not only in terms of latency but also in terms of induced CPU
load, cache pollution etc. For a good buffer management strategy—whenever
buffer reuse is not an option—it is vital to respect the critical size where rereg-
istration becomes more efficient. As we have shown, reregistering or copying the
data according to the critical size results in a latency reduction of up to several
orders of magnitude in both directions.

4.5 When is iWARP/RDMA beneficial?

RDMA over Ethernet offers a lower latency as well as a higher throughput than
plain TCP/IP and even complements that with a close to idle CPU and reduced
memory bus load that TCP/IP cannot provide. As we have discussed in the course
of this chapter, there are, however, hidden costs in terms of the necessary buffer
registration and connection setup.

Figure 4.11 repeats the RDMA Write experiment from Chapter 3 and demon-
strates the performance penalty when the Memory Regions cannot be reused. The
line charts represent the throughput and the bars the induced CPU load. The ideal
scenario is shown in black: an application that can reuse its registered buffers
extensively and therefore does not have to face the aforementioned costs. The
CPU load is low and the link is saturated as soon as the per-byte cost dominates
(≥ 4 KB). The non-ideal scenario, where buffer reuse is not possible, is shown in
gray and white. For the gray experiment, the communication buffers were con-
stantly reregistered whereas for the white one, the buffers were registered once
and thereafter refilled using memcpy(). Reregistration induces a slightly higher
CPU load (×1.7) than the ideal communication pattern and achieves a similar
throughput (−8%). Copying, on the other hand, is significantly more expensive
for large buffers (CPU load ×6) and faces a throughput reduction by up to 36%.
We do not see a significant performance difference for the small buffers because

4.5. WHEN IS IWARP/RDMA BENEFICIAL? 99

0

2

4

6

8

10

1B 1KB 1MB 1GB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

0

20

40

60

80

100

C
P

U
 L

o
a

d
 [

%
]

Reuse (CPU)

Reregister (CPU)

Copy (CPU)

Reuse

Reregister

Copy

Figure 4.11: RDMA Write throughput for different buffering schemes. Only a
buffer reuse strategy is able to fully leverage the link capacity while keeping the
CPU overhead low. If reuse is not possible, reregistration is still preferable over
copying for large buffers.

the buffer management overhead is hidden behind the per-packet processing and
the transfer costs (cf. results from Chapter 3).

4.5.1 Critical Parameters

Despite all the benefits provided by iWARP/RDMA, there are applications that
perform better when using plain TCP/IP due to the hidden costs presented in
this chapter. In Tables 4.2 and 4.3, we address the open question as to when
RDMA offers a benefit over traditional TCP/IP by listing the critical parameters
and giving example applications for each parameter. In the second part of this
thesis, we will look more closely into some of them and discuss a selection of real
world applications in detail.

Table 4.2 lists the application characteristics which hint at a high performance
improvement potential by applying iWARP/RDMA. As we have shown, the benefit
provided by iWARP/RDMA is largest when the application in question is stable in
terms of connections as well as buffers. Furthermore, it must require large amounts
of data to be transferred across the network. Being able to utilize some of the
RDMA specific features like the scatter-gather buffer referencing or the one-sided
operations is not critical in terms of performance but might allow for a simpler

100 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

Application Characteristic Example
large data transfers and large total volume DB recovery, media streaming
able to reuse buffers streaming, VoD
small data size variation DB logging
long lasting connections DB logging, streaming
data in main memory HPC [NSL+08]
CPU intensive HPC
utilize asynchronous interface HPC, VoD
utilize scatter-gather list HPC
utilize one-sided operations streaming

Table 4.2: Application characteristics indicating that the application of
iWARP/RDMA is likely to be beneficial. An ideal application has all of these
characteristics.

Application Characteristic Example
short time-to-first-byte required DNS
short-lived connections webserver [DW07a]
unpredictable msg size RPC [MAFS03]
indirect buffers Java apps

Table 4.3: Characteristics indicating limited or no benefit from applying
iWARP/RDMA.

4.6. SUMMARY 101

and less error prone protocol design and implementation. Table 4.3 lists strong
indicators against RDMA. If any of them matches the application in question,
extreme care has to be taken as iWARP/RDMA is likely to be outperformed by
plain TCP/IP or other legacy protocols.

4.6 Summary

Even though RDMA offers zero copy and kernel bypassing for efficient data trans-
fers between remote hosts in terms of CPU load and memory bus bandwidth, it
has hidden costs. Therefore RDMA is not equally well suited for all applications.
We have argued why a low-overhead communication buffer management is key to
the efficient use of RDMA and have presented a number of optimization strategies.
For the case where the buffers cannot be reused, we have shown how the communi-
cation delay is reduced by up to a couple orders of magnitude if the critical buffer
size is respected. Large buffers must be reregistered and small buffers refilled. The
result is a significantly lower latency, less CPU load and reduced waste of memory.
In that context, we have pointed out the importance of registering MRs on pages
which are resident in main memory. Finally we have specified the application pa-
rameters which must be considered when assessing the use of RDMA for a concrete
application.

4.7 Outlook

By now we have learned how to apply iWARP/RDMA and understand when it is
able to provide a substantial benefit over TCP/IP. In the second part of this thesis,
we will apply our insights and move from micro benchmarks to real applications
which allows us to verify our applicability assessment in practice.

102 CHAPTER 4. THE HIDDEN COST OF IWARP/RDMA

Part II

Enabling Applications for
iWARP/RDMA

103

5
Distributed Compilation Revisited

In the second half of this thesis, we present a number of real-world examples where
we have either extended an existing application with the iWARP/RDMA commu-
nication technology or designed a new application from scratch that demonstrates
how RDMA can be leveraged. By this we

� verify our findings and claims presented in the first part and

� provide a comprehensible assessment based on concrete use cases which helps
to answer the question of whether or not applying RDMA will be beneficial
for a given application scenario.

We start the discussion with porting a distributed compiler from its TCP/IP
communication mechanism to an iWARP-based one. The goal of this exercise
is to illustrate the steps which are necessary to extend an existing distributed
application (which is currently based on TCP sockets) with RDMA capabilities.
Furthermore, we point out what the critical aspects are which need careful con-
sideration in order to maximize the gain.

5.1 Introduction

Given the growing size of software packages that are distributed in source code,
short compilation times are desired. This is particularly true for operating systems
which are distributed in source code and have to be compiled from scratch (e.g., the

105

106 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

Gentoo Linux Distribution [gen]). One approach towards speeding up the overall
compilation without changing the compiler core is to parallelize the process by
using more than one CPU simultaneously on the local host. An extension of this
concept, known as distributed compilation, is to add idle CPUs from remote hosts.

RDMA traditionally aimed at improving high-performance computing applica-
tions and storage-area networks because CPU cycles and memory bus load can be
reduced significantly by applying the featured zero-copy and direct data placement
techniques. With the advent of iWARP, the RDMA technology is now available to
the ubiquitous TCP/IP infrastructure and, thus, becomes interesting and relevant
also for legacy applications.

In this chapter we explore how to convert legacy distributed applications to the
RDMA communication model and exemplify the process with the conversion of
the distributed C/C++ compiler distcc [Poo04] from TCP sockets to the RDMA
interface. We are going to extend it with iWARP/RDMA support, trying to limit
the number of changes in the code while aiming for the largest possible performance
improvement. The RDMA-enabled distcc is termed rdistcc in the following.

5.1.1 Contributions

Based on our findings presented in Chapter 4, we discuss how to extend distcc
with RDMA capabilities such that it can take advantage of some of the features
provided by RDMA. The ideas and approaches we present can be generalized to
a wide range of applications (see subsequent chapters).

Client-driven Application Protocol. The original distcc protocol will be
transformed from a peer-to-peer communication model to a client-driven one which
relieves the server from some of his work and thus allows for better scalability. In
this context, we assess the need for hardware support and point out the alternative
of software-only RDMA communication.

RDMA-accessible Files. Since the input data to a compiler are typically
files residing on a hard disk, we show how even file-based applications can profit
from RDMA although it has been designed for transferring data residing in main
memory. We present a way to do this without changing the way in which distcc
accesses the data.

Connection Manager. As we have seen in Chapter 4, having a static en-
vironment with long-lasting connections is important when using RDMA since
its initial connection setup is costly and complex. By introducing a connection
manager, we improve the communication efficiency and increase the scalability of
distcc which (in its original form) faces a lot of churn.

RDMA Aspects beyond Fast Data Transfers. Even though a common
claim is that RDMA is only beneficial if the data to be transferred is large and if

5.2. BACKGROUND 107

10 Gb Ethernet or faster is used, we demonstrate with software-only iWARP over
1 Gb Ethernet and the distributed compiler (which transfers not that much data)
that there is more to RDMA than raw data copy performance.

5.1.2 Chapter Overview

After this introduction, we continue with a short description of distcc followed
by a revision of some relevant RDMA aspects (Section 5.2). Next, we discuss
the iWARP/RDMA extension of distcc in detail (Section 5.3): we start by show-
ing where we can improve the current design (Section 5.3.1), move on with real-
world considerations (Section 5.3.2), show how to access files using RDMA (Sec-
tion 5.3.3), discuss the explicit buffer management (Section 5.3.4), give an example
of how to do an iWARP-based file transfer (Section 5.3.5), present our connection
management strategy (Section 5.3.6) and finally discuss the network communica-
tion protocol. In Section 5.4, we evaluate the benefits with a number of experi-
ments before we hint at further use cases of the presented techniques (Section 5.5)
and discuss related work (Section 5.6).

5.2 Background

This section provides a short overview of how distcc operates and briefly revisits
the aspects and features of RDMA which are relevant in this context.

5.2.1 distcc Overview

distcc is a well established, easy-to-use wrapper for the GNU Compiler Collection
(gcc) [gcc] that enables remote compilation. It currently supports TCP and SSH
connections. For the remainder of this discussion, we refer to the host that initiates
and offloads compile jobs as the master and the hosts offering their CPU(s) as
slaves. The master leverages the available CPU resources of the slaves for the
compile process.

The distcc setup consists of a daemon running on each slave and a wrapped
gcc on the master. The master does the pre-processing and final linking locally.
Only the “source-code-to-object” translation is offloaded to the slaves. As the
pre-processing and linking steps are performed locally, no header or library de-
pendencies exist on the slaves nor are any changes to the Makefiles necessary.1

Figure 5.1 depicts a simplified example of such a distributed compilation where
the master offloads the translation of two source files into object files to the slaves.

1For more details on distcc, refer to http://code.google.com/p/distcc/

108 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

Slave 1 Slave 2Master

app

src1.c sample.h src2.c

src2.isrc1.i

src1.i

obj1.o

obj1.o obj2.o

util.libNetwork Network
Compiler

(gcc)

src1.i

obj1.o

Compiler

(gcc)

Pre-Processor

(cpp)

Linker

(ld)

Figure 5.1: Example for a distributed compile job.

In the case of distcc, NETWORK stands for a legacy TCP/IP network. This is
what we are going to replace with an iWARP connection.

The network communication protocol defined by distcc consists of four phases
(see Figure 5.2): first, a TCP connection between the master and one of its slaves
is established (CONNECT phase). After that the master sends the compilation
instructions for the pre-processed source code followed by a file containing that
code (SEND phase). The return path from the slave to the master is analogous,
with the difference that now, first the outcome of the gcc invocation is sent followed
by the resulting object file (RECEIVE phase). At the end of each compilation
cycle, the TCP connection is closed (DISCONNECT phase).

5.2.2 Relevant Aspects of RDMA

We will now briefly revisit the RDMA features which are relevant for the upcoming
discussion.

5.2. BACKGROUND 109

SlaveMaster

connect()

send()

receive()

receive()

accept()

SEND

RECEIVE

Disk

src.c

send()

receive()

CONNECT

distcc

src.i

obj.o

distcc

send()

send()

receive()

close() close()

copy

Disk

src.i

obj.ocopy

copy

copy

TCP

Compile

Done

DISCONNECT

cpp

gcc

Figure 5.2: distcc network protocol.

110 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

TCP HOST

APP BUF TCP BUF NIC

DMA

copy

HWKernelUser

(a) TCP socket buffers.

RDMA HOST

APP BUF RNIC

MR1

MR2

HWUser

DMA

(b) RDMA direct data placement.

Figure 5.3: TCP socket buffer versus RDMA Memory Regions.

Direct Data Placement

Figure 5.3 depicts the difference between the flexible but more expensive socket
buffers and the new RDMA-style data placement which we are going to apply.

In Figure 5.3(a), the inbound data is DMA’ed from the network card (NIC)
into the intermediate socket buffer (denoted as TCP BUF). In a second step (when
the user issues a TCP receive call), the data is copied from the kernel socket buffer
into the user application buffer (denoted as APP BUF).

Figure 5.3(b) illustrates the Direct Data Placement approach. Thanks to the
registered MRs, the RDMA-enabled NIC (RNIC) is able to directly DMA inbound
data to the user application buffer without intermediate copying and without going
through the operating system kernel. In Chapter 4, we have discussed the diffi-
culties of this approach: the explicit communication buffer management. Memory
Regions (MRs) have to be sized and registered before RDMA data exchanges are
possible.

With the distributed compiler, we will see how that translates to real-world
applications and learn that there are a number of factors to be considered when
building the explicit memory management.

Asynchronous Operations

All operations (Send, Receive, RDMA Read, RDMA Write) are initiated and com-
pleted asynchronously. This means that the operations are described as Work
Requests (WR) which are posted to Work Queues (i.e., to the Send Queue (SQ)
or the Receive Queue (RQ)) where they are eventually, asynchronously processed
by the RNIC.

The Work Queues are associated with Completions Queues (CQ) which are
used to signal the outcome of the operation back to the application. In order to

5.2. BACKGROUND 111

SQE

WR

WCWC

CQ

SQ RQ

QP

User RNIC

post_send

poll cq

RQE

RQE

WR

WC WC

CQ

SQ RQ

QP

UserRNIC

post_recv

poll cq

SQE

processing

engine

WC

processing

engine

WC

Figure 5.4: Asynchronous Send/Receive operations.

receive the Work Completions, the application may either wait for a respective
event on the Event Channel (blocking) or poll the CQ at a certain interval (non-
blocking). Figure 5.4 illustrates the asynchronous semantic at the example of a
Send/Receive operation with CQ polling on the user level.

This API is different from the synchronous and blocking socket interface and
the conversion is not always straight-forward. Due to the asynchronous completion,
care has to be taken not to block the application yet not to waste CPU cycles for
constant (unsuccessful) polling since we want to leverage the asynchronous nature
in order to overlap computation (i.e., compiling source code or distributing compile
jobs) with communication to get a performance improvement [BBC+03].

Two-sided versus One-sided Data Transfers

As mentioned in Chapter 2, RDMA defines a superset of the classical Send/Receive
communication known from sockets. It introduces RDMA Write and RDMA Read
as additional operations. An RDMA Write places local data into a remote appli-
cation buffer whereas an RDMA Read fetches data from a remote buffer and writes
it into a local one. In contrast to the two-sided Send/Receive communication—
where the applications of both peers are involved in the data transfer—the RDMA
Write and RDMA Read operations are one-sided. Only the application layer of the
host issuing a one-sided operation is actively involved in the data transfer. At the
remote host, the operation is handled by the RDMA device without application
or kernel involvement. Figure 5.5 illustrates the two modes of operation.

Since socket-based communication is always two-sided, one might be tempted
to simply map the socket calls to the Send/Receive operations. Even though

112 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

ReceiverSender

APP

OS

DRIVER

RNIC

USER

KERNEL

HW

APP

OS

DRIVER

RNIC

send() receive()

M
E
M

M
E
M

2 1

3

(a) Two-sided: Send/Receive.

Reader

Writer

APP

OS

DRIVER

RNIC

USER

KERNEL

HW

APP

OS

DRIVER

RNIC

write()

M
E
M

M
E
M

1

2

APP

OS

DRIVER

RNIC

USER

KERNEL

HW

APP

OS

DRIVER

RNIC

read()

M
E
M

M
E
M

1

2 3

(b) One-sided: RDMA Write and RDMA Read.

Figure 5.5: Two-sided versus one-sided operations.

5.3. EXTENDING DISTCC WITH IWARP/RDMA CAPABILITIES 113

this works in most cases, we will illustrate that the one-sided operations bear a
potential beyond Send/Receive. It is thus important to consider the semantics of
the data exchange operation when porting a legacy application to RDMA.

5.3 Extending distcc with

iWARP/RDMA Capabilities

In this section, we will discuss in detail what changes are necessary in order to
extend an existing (socket-based) application with iWARP/RDMA capabilities. In
addition to that, we reason about our design decisions and motivate them based
on our findings presented in the first part of this thesis.

5.3.1 How can distcc profit from RDMA?

The amount of data to be transferred between the master and a single slave is
mostly small (up to a few megabytes per job). The network is thus unlikely
to become the bottleneck. However, the CPUs on the master and the slaves
are. The master is responsible for performing the following tasks: pre-process the
source code, schedule the remote compile jobs, transfer the data and finally link
everything together. The slaves on the other hand only translate the source code
into binary format. We thus have an asymmetric work distribution—depending
on the role of the host—in which the master becomes the bottleneck of the system
when too many slaves are present.

Let the Slaves do the Work

The overall performance of the system is limited by the number of slaves the
master is able to delegate jobs to. In order to reduce the master’s CPU load, as
much of the application logic as possible should hence be moved to the slaves. We
address this problem by using one-sided RDMA operations because they enable a
slave-driven communication protocol. As we will see, this results in a scalability
improvement relative to distcc.

Reduce the In-Host Communication Overhead

The CPU cycles available for a distributed compile job can be increased both by
adding more remote hosts to the setup as well as by taking unnecessary network
processing load off the involved CPU(s). Naturally, remote compilation induces
the overhead of distributing source code among the nodes offering their CPUs and
of them returning the resulting object files back to the initiator. So to leverage the

114 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

total available CPU power from all hosts and to reach a high level of scalability,
it is important to keep the in-host communication overhead small.

In the case of the distributed compiler, the following RDMA features thus aid
in getting a better performance:

� overlap communication with computation by leveraging the asynchronous
communication interface

� reduce the number of CPU-driven copy operations during the data transfers
(see Figure 5.2)

� enable a client-driven protocol to take load off the central scheduler (master)
with one-sided RDMA operations

5.3.2 RDMA Support in Practice

The master can reduce its CPU load using one-sided operations best if an RNIC
(hardware acceleration) handles all the RDMA traffic. On the less-loaded slave
side, an easily deployable, software-based iWARP solution (such as Softiwarp 3.2.2)
with a conventional Ethernet NIC is sufficient. The slaves just need the RDMA
semantics but not necessarily the hardware acceleration. With Softiwarp-enabled
slaves, and a hardware accelerated master, the compute cluster can easily be ex-
tended up to many slaves while still remaining highly dynamic and flexible. By
that, idle CPUs (e.g., workstations of a company) can be utilized for compilation.

However, in practice, machines are rarely equipped with RDMA hardware (only
expensive servers are if at all). When using the original distcc application, per-
forming a distributed compilation is possible with any ordinary machine. Fur-
thermore, the role of the master should not be bound to a specific machine. In
distributed compiling, the amount of data exchanged is typically not large enough
to turn the memory bus of the machines into the bottleneck of the whole sys-
tem. We thus argue that, in this scenario, we can replace the RNIC by dedicat-
ing a CPU to network processing while the other(s) are performing computation
tasks. We therefore limit our experimental evaluation (Section 5.4) to the software
iWARP module which allows RDMA-style communication on machines which are
not equipped with an RNIC. Softiwarp gives us considerable flexibility in creating
low-cost, RDMA/Ethernet-based compute clusters which is ideal for conducting
RDMA experiments that focus more on the semantics rather than on pure perfor-
mance.

For evaluations and experiments with hardware based iWARP, refer to the fol-
lowing chapters where we look at data volumes where dedicating CPUs to network
processing can no longer replace an RNIC.

5.3. EXTENDING DISTCC WITH IWARP/RDMA CAPABILITIES 115

5.3.3 Making Files RDMA-accessible

The first thing that strikes as a bad fit for RDMA is that the input data for a
compiler typically consists of files residing on a persistent storage device (i.e., a
hard disk). Nevertheless, rdistcc can benefit from direct memory access by storing
the files on a RAM disk mounted as a tmpfs [Sny90] volume (on all machines).
The details are explained next.

Master Data Handling. At the beginning of the compile process, the source
files are assumed to be stored on a hard disk drive attached to the master. We
remember, that distcc needs to pre-process the source files locally before shipping
them for remote compilation. We can exploit this step to make the files RDMA
accessible without creating an additional overhead as follows. To pre-process a
source file and prepare the result for later RDMA transfer to a slave, the pre-
processor (cpp) invoked by rdistcc reads the source file (src.c) from the disk and
writes the result (src.i) to a RAM disk (tmpfs) instead of back to the hard drive.
We then use mmap() to create a shared mapping2 of the pre-processed source file
into the application address space and register it as an RDMA Memory Region.

Slave Data Handling. On the slaves, we always keep the source and object
files in main memory to reduce file access times for the compiler. By using the
mmap-approach, we eliminate the copy overhead for passing files between the
rdistcc daemon (has memory view on the data) and the compiler (needs file view
on the data). The object files resulting from compilation are written back to local
memory.

Figure 5.6 illustrates the complete data path from source to object file the way
it is implemented in rdistcc: first, the source (src.i) is placed in the RAM disk
by the pre-processor. Next, the src.i is RDMA’ed to the remote host where the
compiler transforms it into the object file (obj.o). Finally, the object is transferred
back to the master node.

We argue that keeping everything in main memory on the slaves does not
impose any restrictions for two reasons. First, because pre-processed source files
are small in most cases (up to a few megabytes) and second, because a slave does
only have to store a few source files at any time (equal to the number of parallel
compile jobs offered to the master). It does not make sense for a slave to offer
more compile jobs to the master than it is able to process in parallel (bound by the
number of available CPUs). Hence, we do not consume a lot of memory altogether.

We illustrate that with a small example. Let us assume that our average slave
is a 4-way CPU machine (thus offering 4 compile jobs). Further assume that the
machine is equipped with 1GB of RAM (which is little nowadays) and that our
average pre-processed file is 2 MB large and the average object file another 2 MB.

2It is vital to use a mapping which is shared to avoid the data being copied.

116 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

MemoryMemory

SlaveMaster

[tmpfs]

[proc addr space]

Disk

src.c src.i

[tmpfs]

[tmpfs]

src.i

SRC RX MR

OBJ TX MR

SRC TX MR

obj.o

OBJ RX MR

mmap()

mmap()

mmap()

mmap()

obj.o

RDMA

RDMA

gcc

cpp

[proc addr space]

Figure 5.6: Data path for remote compilation.

In this (pessimistic) scenario, we have to store 4 · (2 + 2) MB = 16 MB under full
load which is a mere 1.6% of the total available memory. When using two more
compile jobs than there are CPUs (which is suggested by the distcc author) we
consume 2.3%. Compared with the memory used by gcc for the compilation, the
data stored in memory by rdistcc is negligible.

If there is not enough memory available (unlikely), we can fall back to storing
the data on disk at the slaves. Our implementation also supports RDMA transfers
to and from hard disk instead of main memory. In that case, the mapping is file-
backed and the tmpfs mount is not used. This comes of course with the drawback
that the compiler can no longer directly operate on main memory but has to fetch
the data from the disk.

Advantages of the Proposed Approach

The advantage of using a RAM disk in combination with a shared mapping is that
gcc can access the data residing in main memory as if it were files on an ordinary
file system—we thus do not need to modify gcc. At the same time, the RDMA
subsystem can treat the (mmap’ed) file as a simple block of main memory. We

5.3. EXTENDING DISTCC WITH IWARP/RDMA CAPABILITIES 117

can thus associate a MR with the user address interval that corresponds to that
block of memory and make it accessible for the iWARP subsystem.

In terms of performance, slow and therefore expensive transfers between disk
and memory are reduced to two instances by using the RAM disks: first, we
read the original source file from the disk at the master and second, we write the
resulting object file back. Everything else is done in main memory.

Another advantage (which we do not exploit in our current rdistcc implemen-
tation) is that the files stored in such a way are randomly accessible not only by
the local but also by the remote host.

5.3.4 rdistcc’s RDMA Memory Region Management

Now that the data is stored in memory, we need to investigate how to best register
that memory with the RDMA subsystem.

When designing an iWARP-based application, the buffer management is key
to its success. Sometimes it is not even possible to manage the buffers such that
the application is able to profit from RDMA. This is, for instance, the case for
applications with short-lived connections where the buffers exist only for a short
time and thus have to be (re-)advertised often (i.e., for each new connection). If
these buffers are also small, the management overhead will soon outweigh the zero-
copy benefit [DW07a,FA09]. The setup of the RDMA MRs induces a delay because
the memory has to be pinned and registered with the subsystem as explained
earlier.

We will now discuss our MR management options in the case of rdistcc. As Fig-
ure 5.6 shows, we need two separate MRs on each host: one for the pre-processed
source (SRC TX MR and SRC RX MR) and a second one for the object file (OBJ
TX MR and OBJ RX MR). We have seen in Chapter 4 that the preferred way of
using MRs is to allocate them at the beginning of the program execution and to
reuse them thereafter without the need for reregistration or refilling by copying.
Unfortunately, this is not feasible in the case of distcc because we can force neither
the pre-processor (cpp) on the master nor the compiler (gcc) on the slaves to write
their output to a predefined physical memory address without modification (they
only have the file-system view on the data). Also, the destination address argu-
ment for the mapping is only a hint. There is no guarantee that the data is going
to be mapped to that address. When using the shared mapping, this is almost
impossible and would (in most cases) cause the data to be copied. We therefore
have the options of either creating a MR once at the beginning and refilling it for
each file by copying or, alternatively, we can de-register it when a transmission is
done and register a new one for the next file.

There are thus two aspects that need to be considered for our MR management:
the memory footprint (due to the pinning) and the registration cost. If we are

118 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

refilling the MR, we need to make sure that it is large enough to hold the largest file
we ever need to transmit. This is not feasible because a software project, for which
distributing the compile process makes sense, consists of a large number of files and
checking the size of all of them might take too long. Also, it is hard to predict the
size of the output from the pre-processor and the compiler. Furthermore, refilling
is a great waste of memory in projects where we have only a few large files but a
lot of small files because the memory stays pinned as long as it is registered.

Based on the findings presented in Chapter 4, small buffers should be copied
while it is faster to reregister large buffers. For Softiwarp, the critical size where
it becomes cheaper to register the buffers is at about 16 KB.

Considering this, we have decided to manage the MRs as follows: for the SRC
TX MR3 and the OBJ TX MR4 (see Figure 5.6), we reregister the MRs for each file.
Refilling would limit the scalability of the master due to the large memory footprint
resulting from over-provisioning for large files. The buffer re-advertisement does
not cost us much here because we can piggy-back it on the compile instructions
(see Section 5.3.7). The delay induced by that results from opening an existing
file followed by mapping it into the application address space and registering it as
a MR with the RDMA subsystem. With TCP, the data would have to be copied
from the user space memory into kernel socket buffers which is slower for files
larger than 16 KB. The OBJ RX MR5 is also reregistered in each iteration with
the additional cost of allocating an empty target file (create mmap column). This
makes sense because the object files are written back to the hard drive on the
master. If the master would take the approach of refilling existing MRs, the total
amount of locally available memory would soon become its bottleneck and prevent
it from being able to deal with a large number of slaves. For the SRC RX MR6 we
can register the MR once and reuse it. This is the optimal use case. As argued in
the last section, it does not impose much memory dissipation on the slaves.

In this example, we see that (in real-world applications) there is more to the
Memory Region management discussion than the registration versus memcpy de-
lay. Sometimes, the greater circumstances (e.g., the communication protocol) do
only allow one way of performing the MR management. At other times, the two
options end up yielding a near-equal performance. We find a bit of both in our
case.

3source transmit Memory Region
4object transmit Memory Region
5object receive Memory Region
6source receive Memory Region

5.3. EXTENDING DISTCC WITH IWARP/RDMA CAPABILITIES 119

5.3.5 Transferring the Files using iWARP

Since all the data are in memory and the necessary RDMA buffers (MRs) are in
place, we can now transfer the payload between the master and slave machines
using RDMA.

Function tx_file demonstrates in simplified pseudo code how a file is trans-
ferred using a Write operation on our iWARP library. We illustrate the reregis-
tration approach. The following steps are required:

1. map the file into the application address space and register it as a MR with
the RDMA subsystem [lines 1–2]

2. create and post a Work Request to the Send Queue [line 3]

3. fetch the Work Completion from the associated Completion Queue (CQ) [
line 4]7

Thanks to our iWARP library, we do not have to set up a scatter/gather list
and populate the Work Request. Instead, we simply call post_write_lmr() with
the source and destination buffers as well as the offsets within them (0) and the
size of the data transfer. Since we wait for the completion of the operation on
line 4, we need to flag the RDMA Write operation as being signaled to trigger the
generation of a Work Completion.

Function tx_file(file descr, size, dst addr, dst stag): RDMA data ex-
change.

/* create shared, memory backed mapping */

buffer = mmap(size, MAP SHARED|MAP ANONYMOUS, file descr);1

/* register the buffer as a RDMA MR */

iw_lmr_register(buffer, size, access, src lmr, iw ctx);2

/* create the transmit Work Request and post it to the SQ */

post_write_lmr(src lmr, 0, dst rmr, 0, size, IBV SEND SIGNALED,3

iw ctx);

/* wait for the corresponding Work Completion */

await_completions(IW SCQ, 1, wc, iw ctx);4

7The third step is omitted if the Work Request is configured not to generate a Work Com-
pletion.

120 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

gcc

SlaveMaster

CM

rdistcc

CM
gcc
gcc

rdistcc
rdistcc

RDMAIPC IPC

Figure 5.7: Connection manager.

5.3.6 Connection Management

The last piece of the puzzle before presenting the final network communication
protocol is the connection management. As mentioned earlier, establishing an
iWARP connection is much more expensive than establishing a TCP connection
because iWARP adds three more protocols on top of the TCP stack and additional
programming objects are needed. A conventional distcc master establishes a new
TCP connection to one of its slaves for each source file which is to be compiled
remotely and closes it again after having received the result. This obviously does
not scale for iWARP. We thus introduce a connection manager (CM) that keeps
the RDMA connections open while the rdistcc master is submitting individual
compile jobs. The CM acts as a persistent RDMA proxy for the rdistcc processes
(cf. Figure 5.7) and takes care of the RDMA network transfers (posting Work
Requests, managing remote buffer information, etc.).

Each master process first connects to its host-local CM using standard inter-
process communication (IPC). To reduce intra-host data copying between an rdistcc
process and its local CM, an rdistcc process only provides the CM with path in-
formation for locating the pre-processed file rather than sending the whole file
through the IPC channel. The CM then takes care of the actual RDMA data
transfers and executes the network communication protocol.

Figure 5.8 depicts an example of a complete rdistcc setup including the in-
teraction between the application logic and the CM. The CM is implemented as
a thread pool with a fixed number of threads per slave. One thread cycle en-
compasses exactly one complete protocol cycle (see next section). The number of
slaves involved as well as the number of remote compile jobs is set before starting
rdistcc. This fixed thread allocation is efficient and light weight at run time and
matches the static setup for which distcc is designed.

Overall, the CM minimizes the connection management overhead and simplifies
the rdistcc application logic. Having individual threads to process the communi-
cation simplifies the connection handling and leads to a reliable and early error

5.3. EXTENDING DISTCC WITH IWARP/RDMA CAPABILITIES 121

CM

CM

CM

Slave 3

Slave 2

Slave 1

Master

T1

T2

T3

T4

T5

T6

CM

T1

T2

T3

T1

T2

T3

T1

T2

T3

Build on

Slave2

Build on

Slave1

T7

T8

T9

T3

T10

Build on

Slave3

IPC

IPC

IPC

RDMA

RDMA

RDMA

gcc

gcc

gcc

rdistcc

rdistcc

rdistcc

Figure 5.8: rdistcc processes, threads and their associations.

detection. Without the CM, the iWARP connection setup overhead as discovered
in Chapter 4 would render RDMA useless by removing all its advantages.

5.3.7 Application Protocol for iWARP

We will now look at how it all fits together by transforming the TCP-based distcc
protocol into an RDMA-based one.

As hinted earlier in this chapter, the decision of how to utilize the one-sided and
two-sided operations can have a significant impact on the benefit of using RDMA.
It can make a difference in protocol complexity as well as in load distribution
between communicating peers. The advantage of the one-sided communication is
that only the application layer of one side has to actively participate in the data
transfer. The drawbacks are that a buffer advertisement is necessary beforehand
and that the other side will not know when the data transfer has completed.
Two-sided Send/Receive operations are thus typically used for exchanging control

122 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

MemoryMemoryDisk

[proc addr]

CM CM

connect()

send()

write()

receive()

accept()

SEND

RECEIVE

[tmpfs]

[proc addr]

src.c

[tmpfs]

[tmpfs]

SRC RX MR

OBJ TX MR

send()

receive()

SRC TX MR

CONNECT

OBJ RX MR

rdistcc

open_conn()

compile_remote()

IPC

src.i

obj.o

obj.o

src.i

done()

RDMA

read()

cpp

gcc

Master Slave

Figure 5.9: iWARP based master-slave protocol

messages whereas the one-sided operations are preferred for transferring the actual
data.

The protocol proposed in Figure 5.9 involves both, two-sided (Send/Receive)
and one-sided (RDMA Write and RDMA Read) operations and is partitioned into
the three phases as follows:

In the CONNECT phase, the rdistcc process connects to its CM and sends an
IPC request for opening an RDMA connection to a given slave. If that RDMA
connection already persists, the ICP call returns immediately. Otherwise, the local
CM connects to the corresponding remote CM of the given slave and establishes
a new RDMA connection. The RDMA connections are kept open as long as they
are needed (see Section 5.3.6).

Next, the SEND phase is executed for the file which is scheduled to be compiled
by the given slave. In this phase, the master provides the slave with the following
control information: the compilation instructions (the exact gcc command), the
STag for the MR where the pre-processed source data resides (SRC TX MR) and the
STag for the MR where the compiled object file should be written to (OBJ RX MR).
This data exchange is done using a two-sided Send/Receive operation. By using
this two-sided communication, the slave is notified when the control information
has arrived and can immediately fetch the actual data (the pre-processed file) by
using the one-sided RDMA Read operation. Once the data has been read, the
slave starts the gcc compilation process to produce the object file.

5.4. EXPERIMENTAL EVALUATION 123

After completing the compilation according to the instructions received, the
slave places the resulting object file in the master’s memory using an RDMA
Write and issues a Send operation to notify him of the completion. We denote
this as the RECEIVE phase. When the master receives this Send message, the
object file is already present in his buffer and ready for being linked.

As can be seen from Figure 5.9, the master involvement is small—it only needs
to map the source file into a MR and inform the slave about it through the local
CM. The slave then takes care of the data transfer and compilation. Meanwhile,
the master can schedule other compile jobs. This enables even slow masters to
use many slaves in parallel. Such a slave-driven protocol cannot be designed with
two-sided operations like the ones that TCP offers.

We argue that, despite the increased complexity due to the explicit buffer man-
agement, our protocol does not impose much overhead compared to the original
one because first, the memory mapping and MR registration overhead is not larger
than copying the gcc or cpp input/output between the socket buffers and the ap-
plication address space and second, the size of the buffer information we add to
the existing control messages is negligible.

5.4 Experimental Evaluation

In this section, we assess the value of our software-based RDMA extension in terms
of performance. For that, we conduct a small cluster experiment on our RDMA-
enhanced rdistcc by compiling the Linux kernel 2.6.22 in a distributed fashion on
1 to 14 slaves controlled by a single master.

The nodes are connected via 1 Gb Ethernet enhanced with software-based
iWARP (Softiwarp). The slave machines feature a 1.8 GHz Pentium 4 processor
and 3 GB of RAM whereas the master has a 3.2 GHz Pentium Xeon dual core
processor. On the master, we have bound the network processing as well as the
application to the same core by setting the CPU affinity accordingly.

Figure 5.10 shows the overall wall-clock execution time measured for compiling
the Linux kernel on 1 to 15 machines. The 1-machine case is added as reference
and refers to a local-only compilation on the master. In the following, we explain
the four different experiments and evaluate their outcome.

5.4.1 Data Residing on Memory versus Hard Disk Drive

We have started the experiment series by compiling the kernel using distcc (over
TCP) with all files residing on disk. The wall-clock execution time is shown as
TCP(disk) in Figure 5.10. The bar indicated with TCP(memory) represents the
outcome of the second experiment where the files reside on the RAM disk rather

124 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of remote hosts

T
im

e
 [

s
]

TCP (disk) TCP (memory) RDMA (Softiwarp) RDMA (dedicated CPU)

Figure 5.10: Compiling the Linux kernel 2.6.22 in a distributed fashion using the
TCP as well as the software RDMA transport.

than on the hard disk drive. We find that reading and writing the data from/to
the hard disk does not significantly impact the overall compile time (compared to
having the data in memory) because the distribution and source code translation
take much longer than the disk I/Os.

In all but the first experiments, the compiler input- and output data reside on
RAM disks (tmpfs volumes) in order to assure that the performance gain is not the
result of rdistcc keeping everything in main memory where distcc would normally
keep it on disk.

5.4.2 TCP versus RDMA

After having seen that storing the data on a RAM disk does not affect the out-
come a lot, we now wonder whether the RDMA extension is able to increase the
performance.

Given that the current Softiwarp implementation is based on TCP kernel
sockets and thus can not achieve true zero-copy, distcc over TCP (denoted as
TCP(memory)) and rdistcc over Softiwarp (see RDMA(Softiwarp)) yield a similar
performance. Even though Softiwarp processes three additional network layers
(MPA, DDP and RDMAP), the overhead is negligible compared to plain TCP.
Regarding scalability with respect to the number of slaves, distcc over TCP scales
only up to 7 slaves and rdistcc over Softiwarp does not do much better which is
what we expect due to the missing hardware acceleration.

5.4. EXPERIMENTAL EVALUATION 125

We conclude that simply replacing TCP with software-driven RDMA is not
enough to reduce the wall-clock clock execution time of our compiler.

5.4.3 Dedicating a Core to RDMA Stack Processing

With today’s trend towards multi-core and many-core machines, one (or several)
cores can be spared for RDMA processing [Mog03] as long as the memory bus is
not the bottleneck. To leverage RDMA on the master system which has no RNIC,
we are now dedicating one core to RDMA processing in software while the other
is running the rdistcc master application. The slaves remain unchanged. While
this setup is similar to running rdistcc on a single-core machine that is equipped
with an RNIC, running the application and Softiwarp on different cores in fact
leads to a lower performance (than if an RNIC was used) due to poor data locality
resulting in frequent cache misses. Nevertheless, the use of 14 slaves now gives a
two-fold reduction of the total compilation time compared to TCP. The system
can be expected to scale further when more slaves are added.

One can rightly argue that the same performance increase can be expected
when dedicating a single core to TCP rather than RDMA. While this is true for
applications (like the compiler) which do not transfer a large amount of data, it is
no longer feasible when the local memory bus starts to limit the throughput as we
will see in Chapter 7. Furthermore, having the RDMA extension in place allows
us to replace the software iWARP stack with an RNIC if need be (e.g., when many
more slaves are available).

5.4.4 Who Would Need an RDMA-enabled NIC?

To assess the need for an RNIC, we measure the CPU load distribution with
distcc over TCP (see Table 5.1). We find that the master spends a large amount
of CPU cycles on local data copying and network processing (summarized as data
transfers), since it communicates with all the slaves in parallel and establishes new
TCP connections for each file it transmits. We therefore argue that it would make
sense to equip the master with an RNIC so that the hardware can handle the data
transfers. The CPU cycles saved by this can then be assigned to management,
pre-processing and linking tasks which are also quite CPU intensive but cannot be
hardware accelerated.

At the slaves on the other hand, we find that almost 80% of the CPU load is
caused by gcc processes. The bottleneck here is clearly not the communication
stack and expensive RNICs are therefore not necessary. The relatively high idle
value further indicates that the slaves still have enough processing power to do
RDMA in software and shows that the TCP distcc master is not able to keep
them all busy. This is what sets the limits in terms of scalability. The effect is

126 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

Node Operation CPU time [%]

master

data transfers 59.2
management tasks 28.0
pre-processor and linker 12.4
idle 0.5

slave
compiler 79.8
idle 18.9
data transfers 2.1

Table 5.1: CPU load distribution for TCP-driven distcc on master and slave ma-
chines.

even stronger if an encrypted communication channel (i.e., SSH) is used due to
the crypto overhead as well as the more expensive initial connection setup.

5.4.5 Conclusion

The experimental evaluation has shown, that RDMA can also be beneficial when
transferring comparably small amounts of data. Furthermore, we have found it
to be useful to improve the scalability of asymmetric, centralized systems which
depend on a single node.8

The main benefits which we have identified are:

� the enablement of client-driven protocols (here: slave-driven) to improve the
overall system scalability

� fewer synchronization points (thanks to one-sided operations) which inter-
rupt the main work flow

� the overlapping of communication and computation

However, the benefit is not as dramatic as in the case of a real RNIC and large
data volumes (see following Chapters).

5.5 RDMA File Access - Further Considerations

The proposed technique of creating a shared file mapping into the application
address space and thereafter associating it with a Memory Region for remote

8Another example of that kind which uses real RDMA-enabled hardware can be found in the
subsequent chapter.

5.6. RELATED WORK 127

Database Server

Memory

[tmpfs]

RNIC

iWARP

C1

C2

C3

C4

Cn

C6

C5

Memory

Region(s)

Figure 5.11: Distributed database using the RDMA file transfer mechanism.

DMA is by no means limited to the compiler extension. It could for example also
be used for accelerating the file transfer protocol (FTP) or similar applications.

The advantage of the proposed file transfer mechanism is not only the zero-
copy data transmission but also the enablement of true remote random access as
well as the hardware support through RNICs. A similar, alternative approach is
the kernel sendfile mechanism. However, sendfile does not provide remote random
access and copy avoidance is only possible on the transmit side.9

The distributed compiler does not make use of the fact that the remote file
is accessible in a true random fashion. This could be interesting for applications
like a distributed, file-based database (cf. Figure 5.11) where random access to
some small parts of a large remote database file is desired without having to copy
the whole file over the (possibly slow) interconnect. This example illustrates that
iWARP might also qualify for low throughput environments (e.g. the Internet)
due to its features beyond zero-copy performance improvement.

5.6 Related Work

5.7 Summary

Taking distributed compilation provided by distcc as an example, we have illumi-
nated the various aspects that need to be considered when enabling a legacy ap-
plication for iWARP/RDMA: buffer and Memory Region management, the asyn-
chronous interface, one-sided versus two-sided operations and connection man-
agement. Based on that, we have discussed how distributed compilation can be
accelerated with RDMA. Through the use of the one-sided RDMA operations, we

9A more detailed comparison between sendfile and iWARP zero-copy can be found in Chap-
ter 6.

128 CHAPTER 5. DISTRIBUTED COMPILATION REVISITED

have demonstrated that iWARP can be attractive for enhancing legacy applica-
tions that are currently based on the synchronous socket interface even if they do
not transfer large volumes of data.

5.8 Outlook

We have argued that distributed computing systems using an RNIC at the busy
nodes and Softiwarp together with conventional Ethernet NICs at the other nodes
are performance- and cost-effective (in terms of network processing) for applica-
tions with different CPU load distributions—depending on the role of the node.
Compared with plain TCP, the use of iWARP therefore allows busy core nodes
with an RNIC to serve more edge nodes in parallel. In the following Chapter, we
will illustrate and verify that claim at the example of distributing high-definition
multimedia content in an on-demand fashion where a high service quality and good
scalability are the main concerns.

6
Server-Efficient High-Definition

Media Dissemination

Having illustrated the changes which are necessary to extend a socket-based ap-
plication with iWARP capabilities, we now investigate a use case which focuses on
the performance benefits of applying iWARP/RDMA with dedicated hardware. In
this chapter, we present a method for serving a large volume of data to a (poten-
tially large) number of clients in a way which is efficient for the server in terms of
the number of clients it is able to provide the content to without taking a loss in
the offered service quality. To do that, we leverage the zero-copy and OS bypassing
techniques provided by RDMA-enabled NICs (RNICs). As we will see, dedicating
one or several CPU cores to network processing is no longer a valid replacement
for RNICs when it comes to high data rates.

6.1 Introduction

The way how the Internet is used has changed dramatically in the past few years.
Today, about 23% of the world’s population are connected to the Internet—most
of them through broadband access. This number as well as the bandwidth offered
by the Internet service providers (ISPs) are increasing rapidly [intc]. As a conse-
quence, web content is no longer static but has become dynamic and far richer.

129

130 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

Especially Video-on-Demand (VoD) services such as YouTube1, Amazon VoD2 or
AOL Video3 are becoming more and more popular.

With the widespread availability of broadband connections, the quality of the
media provided by VoD- as well as streaming services increases constantly. Even
though today most videos are still encoded in standard definition (SD) with a
rather low bit rate, large Internet service providers (ISPs) already foresee high-
definition (HD) media to become the predominant format in the near future.

According to Comcast, the next step in the evolution of Internet content will
not only be a shift from standard-definition towards high-definition media but
also from broadcast towards unicast services [Sax]. This trend towards unicast is
attributed to the request for true on-demand content as opposed to streams which
are simply broadcast in loops on different channels.

In the following discussion, we hence focus on the server-side impact of high-
definition media content distribution over high-speed unicast channels. An in-
creasing number of clients requesting media in HD which requires much higher bit
rates poses a number of challenges for the server infrastructure.

6.1.1 Challenges

According to Plagemann et al. [PGHA00], high-definition video-on-demand (HD
VoD) poses two orthogonal service requirements: a large data throughput to de-
liver the high-definition content in due time and a low latency as well as a high
responsiveness from the servers to support convenient, interactive media control.
Transmitting HD media over unicast channels to an increasing number of users
renders meeting these requirements quite complex for two main reasons.

� First, the content servers must be able to sustain a higher aggregate data
throughput than before (the bit rate of a HD video compressed with the
popular H.264 codec [WSBL03] is roughly 10x larger than that of its SD
equivalent).

� Second, the clients expect convenient, interactive control over the content
at all times (pause, skip or rewind as well as switching to another movie).
This unpredictable behavior of each client makes it virtually impossible for
the server to prefetch data efficiently and predict the aggregate service rate.
The problem is even amplified when the media content is encoded with a
variable bit rate (VBR).4

1http://www.youtube.com
2http://www.amazon.com/gp/video/ontv/start
3http://video.aol.com
4The technique of encoding in a variable bit rate is often found in practice because it allows

for a reduction of the average bit rate and thus helps in saving some of the network bandwidth.

6.1. INTRODUCTION 131

6.1.2 Problem Statement

Scalability in existing VoD systems is achieved simply by adding more servers and
setting up load balancing mechanisms. While this is straightforward, it increases
the running costs of the server infrastructure due to higher server and network
maintenance costs, as well as larger power consumption and cooling demands.
The problem we address in this chapter is how to improve the scalability of a single
HD-video server (i.e., its ability to serve a larger number of clients) such that the
demand of the HD VoD service on the server infrastructure is minimized. Such an
improvement involves removing the overhead encountered in current systems. For
this purpose, we propose a novel protocol based on iWARP/RDMA.

6.1.3 Contributions

The contributions of this chapter are three-fold.

� First, we show why traditional media dissemination mechanisms (i.e., RTP
over UDP and HTTP over TCP) are inadequate for serving content at high
bit rates by analyzing the performance and scalability of existing VoD solu-
tions and identifying their bottlenecks through a number of experiments.

� Second, we present a novel media dissemination method for large bit rates
based on a zero-copy protocol stack implementation on dedicated iWARP/RDMA
hardware. We then prove through extensive experiments that our method
increases server-side scalability and removes most of the overhead caused by
current approaches while offering efficient VCR-like media control. For that,
we compare our solution with existing ones as well as with the kernel sendfile
mechanism and a TCP-offload engine.

� Third, we outline an extension to our new protocol to support real-time live
media streams.

6.1.4 Chapter Overview

The chapter is structured as follows: Section 6.2 highlights the iWARP/RDMA
benefits in the context of HD media distribution and reviews two popular streaming
transports. Section 6.3 compares UDP- with TCP-based application protocols
that enable VoD services and explains two TCP acceleration methods. Section 6.4
presents a novel iWARP/RDMA-based protocol for video-on-demand as well as
streaming services and evaluates the proposed solution by comparing it to legacy
systems. Section 6.5 summarizes the benefits and drawbacks. Section 6.6 lists
related work before Section 6.7 finally summarizes this chapter.

132 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

6.2 Background

In this section, we briefly outline the iWARP/RDMA benefits with regard to HD
media dissemination and review the two most popular streaming mechanisms used
today.

6.2.1 RDMA Benefits

In bypassing the operating system and eliminating intermediate copying across
buffers (thanks to the direct data placement feature), RDMA reduces the CPU
cost of large data transfers as well as the end-to-end latency which is precisely
what we need to minimize the server load in the VoD scenario.

Similar to the compiler presented in the last chapter, we will be able to ben-
efit from the asynchronous nature of the communication API. As we will see in
Section 6.4, we can have a number of outstanding one-sided RDMA Read Work
Requests on the clients which allows us to

� overlap shipping of the data with encoding or decoding of the media and

� fetch the required data from the server without interrupting its current
task(s).

In this scenario, the Memory Region management is straight forward and does
not cause any overhead other than a slightly delayed start of the playback. Fur-
thermore, we do not need a connection manager or similar mechanism to handle
the iWARP connections because the setup is static and the connections are (typ-
ically) long lasting. Offering HD VoD services thus seems to be a perfect match
for RDMA.

RDMA over Wide Area Networks

Since iWARP makes RDMA available over Ethernet, we can use it to transfer HD
media across any Ethernet-based network. Even though unlikely in the Internet
of today (due to bandwidth constraints), it is conceivable for the future to attach
an RDMA-enabled media content server directly to a 10 GbE wide area network
(WAN) backbone serving its HD content to a (potentially large) number of clients.
The application scenario for serving data over 10 GbE today would rather be a
local area network (e.g., in a company). Since we use iWARP we can later on also
deploy the setup on the Internet without any changes.

The clients do not need to be equipped with an RNIC because they do not
receive that much data—the hotspot is the server. Therefore, in a realistic scenario,
the clients would run Softiwarp on ordinary Ethernet NICs while the server should

6.2. BACKGROUND 133

be equipped with an RNIC. Having a software RDMA solution is critical to the
real-world applicability of our proposal for cost reasons.

6.2.2 Prevalent VoD Transports

We will now review two legacy protocol stacks which are currently used to dissem-
inate media data in an on-demand fashion.

RTP over UDP

A common approach for transferring media streams over a network is to use the
Unreliable Datagram Protocol (UDP) accompanied by the Real-Time Transport
Protocol (RTP) [SCFJ03] which defines a standardized packet format for audio and
video. In order to feed out-of-bound information back to the streaming source, the
Real Time Control Protocol (RTCP) is added. Finally, the Real-Time Streaming
Protocol (RTSP) provides control over the media to the user and completes the
VoD setup over UDP.

Since RTP was designed with focus on streaming media and other real-time
data, it seems like a good match for VoD. The motivation for using unreliable
connectionless services such as UDP for video streaming is that media streams
typically tolerate data loss better than delay and therefore the higher reliability of
TCP is not needed. With UDP, unnecessary retransmissions of data (which is not
needed anymore because it would arrive too late) are avoided. Therefore, missing
parts of the streams are skipped rather than stopping the stream and waiting for
the retransmissions which leads to a more pleasing viewing experience. Contrary
to common wisdom, however, this method is not at all suited for disseminating
media at high bit rates as we will see in Section 6.3.2.

HTTP over TCP

YouTube, for example, as one of the main sources of Internet media streams to-
day, has chosen HTTP-based video dissemination. Even though HTTP is based
on connection-oriented TCP and was not specifically designed to meet media-
streaming requirements, the combination offers some important advantages:
Interoperability. HTTP assures good interoperability in the sense that no special
software is needed. Any state-of-the art web browser will do for receiving the
stream.
Firewalls. HTTP port 80 is allowed on most firewalls whereas other ports (po-
tentially used by RTP) are often blocked.
Server Efficiency. HTTP is able to outperform RTP in terms of server efficiency
as we will demonstrate in Section 6.3.3.

134 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

HTTP GET good_movie.mpg
Range bytes=offset-

206 Partial Content

Client Server

ACK

ACK; window=0

206 Partial Content

window=n

recv()send()

send()
recv()

recv()
ACK

206 Partial Content
recv()

ACK

206 Partial Content

recv()

206 Partial Content
recv()

ACK

consecutive recv() calls

to transfer inbound data

into user app buffer

PAUSE

stop calling recv();

socket buffer fills up
TCP window closed;

stop sending new data

RESUME

continue to receive data

on application level
TCP window open again;

continue sending data

HTTP request received;

send the requested data

PAUSE

Figure 6.1: The TCP flow control mechanism implicitly enables the client to pause
the media stream (without connection teardown) by stopping to call recv(). As
a consequence, the receive socket buffer fills up, the TCP window closes and the
server stops transmitting new data.

Reliability. The TCP reliability feature can be desirable for highly compressed
media where the loss of a key frame can cause severe playback disruption (given
that the retransmission completes in time).
Media Control. The TCP flow control mechanism implicitly allows client-driven
media control (see Figure 6.1). Not reading new data from the socket and thus
delaying TCP window updates causes the sender to stall the stream. Seeking is
done by simply sending an updated HTTP GET request with the desired new offset.
There is no need for a set of companion protocols as in the case of RTP/UDP.

6.3 Assessment of Current Systems

Before looking at our iWARP/RDMA-based media dissemination mechanism, we
evaluate current existing video dissemination solutions in practice through a series
of experiments. We focus on solutions that use RTP and HTTP as their transport.

As defined by the problem statement, we strive for server-side scalability im-
provements. Our main criterion of media distribution efficiency is the maximum
number of clients a single server is able to serve concurrently without service

6.3. ASSESSMENT OF CURRENT SYSTEMS 135

degradation such as frame losses or late frames.

6.3.1 Experimental Setup

We start the evaluation by describing the setup used throughout the experiments.

Service Parameters

The videos used for the experiments are encoded with the predominant codec for
HD media (i.e., H.264). We first look at the influence of streaming at different
bit rates resulting from the various resolutions (see Figure 6.2). We start with SD
resolution (480p) at an average of 1 Mbps and go up to full HD (1080p) requiring
8.7 Mbps on average for our test movie. Next, we investigate the impact of the
data access pattern by the clients. As we will see, it can make a difference if the
clients watch the stream sequentially from the beginning to the end or if they
perform random jumps across it.

We have also analyzed the influence of other service parameters, such as offering
varying numbers of movies, movies of different lengths, or changing the client-side
cache size. Compared with the bit rate and the access pattern, none of the other
parameters had a significant impact on scalability and are therefore not discussed
any further.

In order to avoid disk access overheads affecting the results, we have preloaded
the complete test data set into the main memory at the source (i.e., the server).
In reality, this imposes a limitation with respect to the amount of data a server
is able to provide to its clients at any point in time. In our final discussion, we
will point out two ways to address this issue. For now, we assume that the main
memory of our server machines is large enough to hold the entire media data.

Distribution Network

We have examined the performance of the existing VoD solutions on a 10 Gb
switched Ethernet fabric. Our test bed consists of an IBM BladeCenter containing
six HS21 BladeServers. Each of them is equipped with a quad core Intel Xeon CPU
(2.33 GHz), 8 GB of main memory and a Chelsio T3 RDMA-enabled 10 GbE NIC.
The BladeServers are running a Fedora Linux 2.6.27 kernel with the OpenFabrics
Enterprise Distribution v1.4 [ofe] for iWARP support. One BladeServer acts as
the server (media source) and the other five are connecting to it as clients (media
sinks). Each client machine runs up to 200 client application instances concurrently
to simulate a total of 1000 physical clients.

136 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

1080i/p (Full HD)

720p (HD)

576i/p (SD, PAL)

480i/p (SD, NTSC)

1
9
2
0

1
2
8
0

7
2
0

480

576

720

1080
2'073'600 pixels

921'600 pixels

414'720 pixels

345'600 pixels

Figure 6.2: Video resolutions ranging from 480x720 (SD, NTSC) to 1080x1920
(full HD). The visual real-estate is a factor 6 larger for full HD as compared to
SD.

6.3.2 RTP-based Systems

In our first test, we explore the scalability of RTP over UDP for various bit rates
with special focus on the high bit rates needed for HD media content. We have
conducted the experiments with the two most prevalent media servers for Linux
that offer VoD services using RTP: The open source VideoLAN Server [vid] and
the Darwin Streaming Server [dss]. The following charts reflect the measurements
from the VideoLAN software only because its performance is not significantly
different from the Darwin Streaming Server.

We have conducted our first experiment on the setup described above with
up to 300 clients.5 Figure 6.3(a) reflects the client’s viewing experience by the
number of received frames. The stream features 24 frames per second. In order
to get a smooth playback, all the frames must be received in time. As can be
seen, the media encoded with the low bit rates required for SD media (i.e., 1 Mbps
and 2.5 Mbps) are successfully received by all the 300 clients (and less). When
moving towards the higher bit rates, however, the number of successfully serviced
clients drops to 260 for 5.3 Mbps and 150 for 8.7 Mbps. As we are running on a
10 Gbps network, the observed service rates indicate that only about 15 % of the
available bandwidth is actually utilized. The erratic shape of the curves beyond

5Up to 60 client application instances are running on each of the 5 client machines.

6.3. ASSESSMENT OF CURRENT SYSTEMS 137

0

10

20

30

0 50 100 150 200 250 300

Clients

F
r
a
m

e
s
 /

 s
e
c

8.7Mbps

5.3Mbps

2.5Mbps

1Mbps

(a) Successfully (in time) received frames. The number of clients which
can (concurrently) receive the stream drops with an increasing bit rate.

0

100

200

300

400

0 50 100 150 200 250 300

Clients

C
P

U
 L

o
a

d
 [

%
]

8.7Mbps

5.3Mbps

2.5Mbps

1Mbps

(b) Scalability is limited by the CPU power. The maximum number of
concurrent clients corresponds with maximum CPU utilization.

0

10,000

20,000

30,000

40,000

0 50 100 150 200 250 300

Clients

IR
Q

s
 /

 s
e

c

8.7Mbps

5.3Mbps

2.5Mbps

1Mpbs

(c) RTP over UDP causes a lots of interrupts (especially at high bit rates)
causing cache thrashing and inefficient CPU utilization.

Figure 6.3: RTP over UDP shows poor scalability on the high bit rates required
for the (full) HD resolution.

138 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

the scalability limit (dashed parts of the plots) is caused by nondeterministic,
non-reproducible behavior of the server and suggests severe service degradation.

Figure 6.3(b) reveals the reason for it: we are bound by the CPU(s)6 of the
server. The moment where the CPUs reach maximum utilization corresponds quite
precisely with the start of the observed service degradation. When investigating
the reason for the high CPU load using oprofile [opr], we have found that most of
the CPU cycles are spent in copying data and RTP packetizing.

Another effect of RTP-based high speed communication can be found in Fig-
ure 6.3(c). A large number of interrupts are thrown. This leads to numerous
context switches and cache pollution which is undesirable [MB91]. Also here, the
curves depend on the bit rate.

On one hand, RTP/UDP suffers severely when streaming at high data rates. On
the other hand, we have found that RTP has the advantage of not being susceptible
to non-linear data access patterns. Even with relatively high jump rates (i.e., a
random jump by each client every 30 seconds), the number of serviceable clients
remains the same (not shown). As we will see in the upcoming section, HTTP
suffers a lot more in that respect.

We conclude that RTP over UDP is not well-suited for high bit rates as it is
not able to make good use of the network resources at hand due to excessive CPU
usage.

6.3.3 HTTP-based Systems

In the preceding section, we have shown that RTP/UDP does not manage to fully
utilize the 10 GbE link because of the large data copying overhead when streaming
at high bit rates. We now repeat the above experiment with the 8.7 Mbps data
rate using HTTP/TCP and compare the result with our previous findings. Again,
the key performance metric is how well the server scales in terms of the number of
concurrent full HD streams it can provide. For our experiments, we have chosen the
prevalent HTTP server by Apache [apa] with the multi-processing worker module7

which is needed to be able to stream to more than 150 clients in parallel as each
data stream needs to be handled by its own thread. To obtain a fair comparison
with RTP, we first use the plain kernel TCP stack without sendfile support and
without TCP-offloading. Figure 6.4 shows the result compared to RTP over UDP.

As can be seen in Figure 6.4(a), the link can still not be saturated. We can only
provide our service to 800 out of the 1000 clients—20% of the 10 GbE bandwidth
are still unused.

However, as shown in Figure 6.4(b) the CPU limit (where all 4 CPUs are busy)

6We denote full CPU utilization of the 4 cores as 400 % in the Figure.
7http://httpd.apache.org/docs/2.0/mod/worker.html

6.3. ASSESSMENT OF CURRENT SYSTEMS 139

0

10

20

30

0 200 400 600 800 1000

Clients

F
r
a

m
e

s
 /

 s
e

c

RTP/UDP

HTTP/TCP

(a) RTP/UDP can serve full HD content to up to 150 clients in parallel
while HTTP/TCP can handle up to 800 clients.

0

100

200

300

400

0 200 400 600 800 1000

Clients

C
P

U
 L

o
a

d
 [

%
]

RTP/UDP

HTTP/TCP

(b) Also HTTP/TCP suffers from a high CPU utilization. Both mech-
anisms face an exponential load increase relative to the number of
clients.

Figure 6.4: HTTP/TCP on Apache scales more than 5 times better than
RTP/UDP on VideoLAN using the full HD bit rate (8.7 Mbps).

140 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

kernel buf

user buf

NIC

socket buf

HDD

DMA copies

user space

kernel space

CPU copies

hardware

(a) The data on the hard disk drive (HDD) is first read into a user buffer
through a temporary kernel buffer. Thereafter, it is sent out through
the network interface card (NIC) by copying the data through yet
another kernel buffer (the socket buffer).

read() write()
kernel traps

(b) The data is fetched into user space by means of a read() operation
before it is sent onto the network with a write() call.

Figure 6.5: Transmitting data residing on a hard disk drive through user space over
the network requires a number of DMA- as well as CPU-driven copy operations
and several context switches.

is reached much later with HTTP/TCP than with RTP/UDP. This is a result of
the reduced packetizing overhead and the simpler connection management. Yet,
the server CPU load increases exponentially (as in the case of RTP/UDP), indi-
cating bad scalability properties when moving to even higher bandwidths (e.g., by
inserting several 10 GbE network adapters into the server).

In order to reduce the server load we now apply the Linux sendfile mechanism
and add a TCP-offload engine (TOE).

Kernel Sendfile Support

The high server side CPU load observed in the HTTP/TCP test is primarily due to
massive data copying on the data source (server). Figure 6.5 illustrates the process
followed to send data stored on a hard drive by using the normal read()/write()
combination: The data is first read from disk through a temporary kernel buffer
into a user buffer; then it is written back into another kernel buffer and finally
copied to the network interface card (NIC) (cf. Figure 6.5(a)). Overall, the process
is expensive because it involves 2 DMA copies, 2 CPU copies and several context
switches (Figure 6.5(b)).

Since version 2.2, the Linux kernel offers the sendfile system call. In contrast
to read()/write(), it allows the data to be sent directly from the temporary kernel
buffer onto the network without going through user space. If the utilized NIC is
equipped with a real DMA engine (as is the case for our Chelsio T3 adapter), the

6.3. ASSESSMENT OF CURRENT SYSTEMS 141

kernel buf

NIC

socket buf

HDD

kernel space

hardware

DMA copies

user space

(a) The detour through user space as well as the CPU-driven copy oper-
ations are avoided. The socket buffer is populated with pointers for
transmitting the data residing in the kernel buffer.

sendfile()
kernel traps

(b) The data transmission using sendfile() requires only one system call.

Figure 6.6: The sendfile() mechanism is more efficient than the read()/write()
sequence as it passes the data from the storage medium to the network card entirely
in kernel space and without CPU-driven copy operations.

CPU copies are avoided altogether. Furthermore, the numbers of context switches
and necessary system calls are reduced. Figure 6.6 illustrates the process.

The advantage of sendfile is that it does not require changes in the software
or application protocols used. Furthermore, since it is based on files, a massive
storage cluster (e.g., RAID) can be used to store all the content, and it is still
possible to do zero-copy data transmission on the server side.

In order to see the impact of the sendfile copy avoidance mechanism on the
scalability, we have reconfigured our Apache web server to apply this mechanism
and re-ran the above VoD experiment. Figure 6.7 shows the outcome: The number
of clients the server can handle is now limited by the link capacity while induc-
ing only 70% CPU load on one core for serving all the 1000 clients (denoted as
HTTP/sendfile in the figure).

Even though, sendfile offers a great performance benefit over the classical
read()/write() approach, it has also some weaknesses. First of all, the sendfile
mechanism can only be applied at the sending side. While this not a problem
in our one-to-many communication scenario, it is a drawback for high through-
put data exchange on a single link as the receiving side faces a higher overhead
in traditional communication systems (e.g., TCP/IP). Second, sendfile—as the
name suggests—can only transfer files from the file system onto the NIC. There is
no support for direct memory access to user level buffers and the like. Last, the
interrupt rate is still high causing cache pollution.

142 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

0

10

20

30

0 200 400 600 800 1000

Clients

F
r
a

m
e

s
 /

 s
e

c

HTTP/read-write

HTTP/TOE

HTTP/sendfile

HTTP/sendfile+TOE

(a) By using either a TCP-offload engine (TOE) or the kernel sendfile
mechanism, all 1000 clients can be served and the link becomes the
limiting factor.

0

100

200

300

400

0 200 400 600 800 1000

Clients

C
P

U
 L

o
a

d
 [

%
]

HTTP/read-write

HTTP/TOE

HTTP/sendfile

HTTP/sendfile+TOE

(b) Both, the TOE as well as the sendfile mechanism bring down the server
CPU load significantly (sendfile does a better job because it eliminates
the intermediate data copies on the sender). The best performance is
achieved if both mechanisms are combined.

Figure 6.7: By combining the kernel sendfile mechanism with a TCP-offload en-
gine, the server-side CPU load can be reduced significantly causing the network
bandwidth to become the bottleneck.

6.3. ASSESSMENT OF CURRENT SYSTEMS 143

Offloading the TCP/IP Stack

In addition to the sendfile mechanism, we can offload the TCP/IP stack process-
ing from the OS kernel onto dedicated hardware—a so called TCP-offload engine
(TOE).

As mentioned in Chapter 2, TOE’s were an early attempt to reduce the com-
munication overhead of the TCP/IP stack. Figure 6.7(b) shows why they were not
that successful (denoted as HTTP/TOE): even though a TOE runs on expensive,
dedicated hardware, it consumes more CPU cycles than the sendfile approach—
which does not require special hardware—because it is not able to eliminate the
intermediate data copy steps. While the TOE approach is able to serve the full
HD stream to all the clients, it still requires 155 % CPU load (more than twice as
much as sendfile).

However, combining sendfile together with the TOE results in a CPU load
reduction by half as compared to sendfile alone. Yet, the induced load still linearly
increases with the number of clients (denoted as HTTP/sendfile+TOE).

We conclude that HTTP over TCP is able to saturate the 10 GbE link with
moderate CPU load—which is linearly increasing with the number of clients—if the
kernel sendfile mechanism together with a TCP-offload engine are used. Without
these TCP enhancements, the CPU load increases exponentially. HTTP is then
not much better than RTP/UDP in terms of server side scalability.

Clients Interacting with the Stream

So far, we have only considered passive clients that, once the stream has started, do
not issue any further control commands. As we have to provide VCR-like control
over the stream to be true on-demand, we need to investigate the implications of
client control commands on the server. Pausing and resuming was illustrated in
Figure 6.1. In a real-world scenario, this operation does not cause much load on
the server. Seeking and jumping, on the other hand, does as users typically issue
these commands with a much higher frequency.

In this section, we look at the impact of the clients performing random jumps
within the media at given intervals. We have each client perform a jump to a
random position within the stream every 30 or 60 seconds8 and compare the CPU
load with clients performing no jumps at all. Figure 6.8 depicts the result for
plain TCP (Figure 6.8(a)) as well as for sendfile-enhanced data dissemination
(Figure 6.8(b)).

In the case of plain TCP, the server is no longer able to serve 800 clients but
only 600 or 450 when the clients jump every 60 or 30 seconds, respectively. The
sendfile-enhanced server shows a similar behavior. In order to serve 1000 clients,

8The clients are not synchronized—they do not all jump at the same time.

144 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

the software now induces 170 % or 230 % CPU load for the 60 or 30 seconds jump
intervals, respectively.

In summary, we state that the more the users interact with the stream, the
more load is induced on the server machine. In the next section, we will present
our iWARP/RDMA approach and discuss it in comparison with RTP/UDP and
HTTP/TCP.

6.4 Server-Efficient Media Dissemination with iWARP

While the aforementioned sendfile and TOE mechanisms significantly improve
server performance, an iWARP/RDMA-based approach potentially eliminates all
server CPU involvement during video data dissemination. This section proposes
a VoD network protocol based on iWARP, evaluates the performance of an actual
implementation of the proposed protocol and discusses the benefits of the RDMA
semantics for VoD systems.

6.4.1 iWARP/RDMA-based VoD Protocol

The purpose of our protocol is to reduce the server load to the minimum while
fulfilling the client-side VoD requirements in terms of bandwidth and media access
semantics (i.e., a bandwidth large enough to transport the high bit rate required
for full HD and a low latency for interactive stream control).

RDMA Connection Management

The proposed communication protocol, depicted in Figure 6.9, starts with the
clients opening an iWARP connection to the server. The connection setup allows
a small amount of private data to be attached to both, the connection request and
the connection response message. The clients use the private data of the connec-
tion request to select the movie, whereas the server attaches a buffer descriptor of
the requested movie to its connection response. The buffer descriptor is a triplet
consisting of the starting address of the buffer holding the movie, the length in
bytes and a steering tag (STag) which uniquely identifies the RDMA source Mem-
ory Region. After the connection establishment phase, the clients have all the
information needed to fetch the movie using the RDMA Read operations. In con-
trast to the compiler case presented in the previous chapter, we do not need a
connection manager since the connections are expected to be long lasting and the
initial setup cost is amortized over the playback interval.

6.4. SERVER-EFFICIENT MEDIA DISSEMINATION WITH IWARP 145

0

100

200

300

400

0 200 400 600 800 1000

Clients

C
P

U
 L

o
a

d
 [

%
]

every 30sec

every 60sec

no jumps

(a) HTTP using read()/write(). The CPU load reaches its maximum ear-
lier if the clients do random jumps through the media stream. A true
video-on-demand solution must offer this kind of control functionality
and should not be negatively affected by it.

0

100

200

300

400

0 200 400 600 800 1000

Clients

C
P

U
 L

o
a
d

 [
%

]

every 30sec

every 60sec

no jumps

(b) HTTP using sendfile. Also in this case, the CPU load increases sig-
nificantly (i.e., a factor 3 in the 30 sec case) when the clients perform
random jumps.

Figure 6.8: Having the clients perform random jumps rather than consuming the
media stream in sequence adds a significant load to the server in the HTTP-based
solutions. Even the sendfile is not able to avoid this overhead.

146 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

CONN_REQ: good_movie.mpg

CONN_RESP: {addr, len,
Stag}

Client Server

connect()

accept()

consecutive

rdma_read() calls to

fetch data from the

source buffer on the

server

PAUSE

stop calling

rdma_read()

RESUME/JUMP

continue calling

rdma_read(); possibly

with a different

source address

server does not have to

do anything; all requests

are handled by the RNIC

PAUSE

rdma_read()

rdma_read()

Figure 6.9: Client-driven RDMA protocol.

Transferring the Payload

Semantically, we are given the choice between RDMA Read, RDMA Write and
Send/Receive to implement the actual media data transfers. From a protocol per-
spective, the key difference between a streaming service and video-on-demand is
that the former is push-based while the latter is pull-based. Therefore, having
the clients issue RDMA Read operations is the most natural way of implementing
the data exchange for VoD. As this operation is one-sided, it enables a completely
client-driven protocol offering efficient VCR-like media control at minimum server
load. Figure 6.9 illustrates our simple VoD protocol. We will discuss later in
this chapter (Section 6.4.4) that RDMA Read in combination with Send/Receive
operations are also well-suited for implementing push-based live-stream data dis-
semination.

As we have seen in Chapter 3, RDMA operations perform best—low CPU load
while being able to provide the maximum throughput—for data transfers larger
than a certain minimum size. This minimum data transfer size in our setup was
found to be 8 KB. We thus always request at least 8 KB from the server in our
VoD extension.

Since the entire movie is statically available in the buffer advertised by the
server, the clients simply need to issue continuous RDMA Read operations from
different source offsets in order to get the data required for playback. This protocol

6.4. SERVER-EFFICIENT MEDIA DISSEMINATION WITH IWARP 147

is a good example to demonstrate the benefit of the one-sided operations: once
the client has the remote memory information, the server CPUs are not involved
in the data dissemination anymore as there are no synchronization points in the
protocol apart from the connection setup and teardown.

Integrating the iWARP Protocol into Existing VoD Systems

Due to the client-driven protocol, the server implementation is simple. We have
thus designed it from scratch as a stand-alone application.

On the client side, we suggest two ways of integrating the iWARP communi-
cation:

� either by implementing a client-local proxy which translates the RDMA com-
munication into HTTP or RTP or

� by extending the client implementation with RDMA code.

The proxy has the advantage, that any media playback software (which under-
stands HTTP or RTP) can be used unmodified. The minor drawback is that the
proxy requires the data to be copied. However, this is just a minor issue because
the data rates at the clients are low.

For the evaluation presented next, however, we have extended the VideoLAN
client with RDMA capabilities to minimize the number of components involved
and to get an upper bound for the scalability.

6.4.2 Protocol Performance Evaluation

In this section, we analyze the performance of our iWARP-based system in terms
of server overhead and scalability.

Figure 6.10 shows the results of our protocol compared with plain HTTP
(denoted as HTTP/read-write) and HTTP with sendfile support (denoted as
HTTP/sendfile) offering full HD content. We have limited the experiment to 1000
clients, as this is enough to fill the 10 GbE link. Figure 6.10(a) indicates that our
solution is capable of serving the required data to all clients in time by saturating
the link. Figure 6.10(b) reflects the server’s CPU load. During data transfer, plain
HTTP induces an exponential load and HTTP with sendfile a linear load. Our
RDMA protocol, in contrast, induces no load at all, indicating good scalability.
Independent of the local CPU performance, the RNIC itself is able to saturate the
link by processing the RDMA Read Requests in hardware. In addition to avoid-
ing data being copied, using an RDMA protocol with an RNIC completely avoids
interrupts from the NIC since the CPU is not involved in protocol processing (see

148 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

0

10

20

30

0 250 500 750 1000

Clients

F
r
a

m
e

s
 /

 s
e

c
HTTP/read-write

HTTP/sendfile

iWARP

(a) In terms of scalability, iWARP is just as good as sendfile. The link is
the bottleneck: the clients get all data without playback disruption.

0

100

200

300

400

0 250 500 750 1000

Clients

C
P

U
 L

o
a

d
 [

%
]

HTTP/read-write

HTTP/sendfile

iWARP

(b) HTTP shows a CPU load increase linear to the number of clients while
iWARP incurs a constant, negligible overhead only.

0

5,000

10,000

15,000

20,000

0 250 500 750 1000

Clients

IR
Q

s
 /

 s
e

c

HTTP/read-write

HTTP/sendfile

iWARP

(c) The sendfile-enhanced HTTP solution does not reduce the con-
text switch rate compared to classical read()/write() data transfers.
iWARP, on the other hand, does not cause any interrupts as the RNIC
handles all data transfer requests autonomously.

Figure 6.10: Our proposed iWARP solution scales up to the link capacity without
inducing an overhead in terms of CPU load or interrupts.

6.4. SERVER-EFFICIENT MEDIA DISSEMINATION WITH IWARP 149

0

100

200

300

400

0 200 400 600 800 1000

Clients

C
P

U
 L

o
a

d
 [

%
]

HTTP/read-write

HTTP/sendfile

iWARP

Figure 6.11: Random jumps every 30 seconds on full HD content. VCR-like me-
dia control such as jumping to a different position of the media does not cause
any overhead when using iWARP. HTTP, however, suffers with increasing client
interaction.

Figure 6.10(c)). This is highly desirable as it reduces the context switching rate
significantly and therefore leads to a lower cache pollution.

Also, the server does not suffer from the clients exercising their media control
features. Figure 6.11 depicts the impact of all clients performing random jumps
within the media stream every 30 seconds. While the HTTP-based systems incur
a much higher CPU load, the iWARP solution does not suffer at all thanks to the
RNIC.

This could not be achieved to the same extent with a software-based iWARP
stack running on the server as it is based on the kernel TCP implementation and
would thus suffer in a similar way as the HTTP systems. At the client side,
however, the data rate is low and it makes perfect sense to apply Softiwarp there.

6.4.3 In-Band VCR-like Media Control

Our fully client-driven video streaming protocol is a server-efficient way of provid-
ing VCR-like media control without requiring explicit feedback- or control mes-
sages. All efforts to control the data flows are performed at the client side, thus
freeing the server from almost all application protocol processing. This is reflected
in Figures 6.10(a) and Figures 6.10(b): The CPU load induced on the server is
negligible while all clients receive their requested data in time. The simple protocol
thus provides a number of advantages:

� Each client is free to autonomously read any amount from any position within
the advertised buffer whenever new data for playback is needed. If several
movies are available on a server, a client can watch any of them by simply
switching to another buffer.

150 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

� The server does not need to keep track of which client is watching which
movie—our server is stateless while disseminating data.

� An expensive stream control protocol with feedback loop as well as synchro-
nization or packetizing overhead (as in RTP) are avoided altogether, thereby
reducing not only the server load but also the overhead on the network itself.

� The server-side overhead is minimal (cf. Figure 6.10(b)) because the RNIC
hardware takes care of the data transfer. It processes the inbound RDMA
Read Requests and sends back the requested data through corresponding
RDMA Read Response messages without requiring operating system inter-
vention. The CPU of the server is only needed for connection establishment
and tear down.

� In contrast to the sendfile approach, copies are avoided not only on the server
but also on the clients. This feature is particularly interesting as it allows us
to extend our protocol to support even real-time streams.

6.4.4 Live Streaming as a Special Case of VoD

Besides VoD, the other popular media dissemination scenario is live streaming.
There, the video content is not prerecorded but generated in real time, for example
by a video camera that continuously writes its output to local memory. The
key difference is that in a VoD environment the client is free to choose when to
fetch the next part of the video since it does not change on the server. Live
streaming, on the other hand, is driven by the media source at the server, and
the media buffer is continuously overwritten. In that context, a high server-side
CPU availability is desirable since the data typically needs to be processed (e.g.,
encoding/compression) before it is transmitted over the network. The sendfile
approach cannot directly be applied to this scenario as the data would have to be
written to a file first. With our iWARP-based VoD protocol on the other hand,
we can provide an efficient zero-copy solution for live streams.

For such an extension of the protocol, we look at live streaming as a special
case of VoD where the user does not interact with the stream apart from starting
and stopping it. The server’s video data production must now be synchronized
with client data consumption (RDMA Read): The server may do that by sending
periodic notification messages through Send/Receive operations. Not sending the
data itself but updates about data availability has a number of advantages from
a server perspective. As these notifications are sent to all clients, each client can
choose the stream it currently wants to receive without inducing any coordination
or tracking overhead at the server. A push-based scheme, on the other hand,
would require the server to keep track of which client is receiving which streams

6.5. DISCUSSION 151

1

10

100

1000

10000

100000

In
te

rr
u

p
ts

 /
 s

e
c

(l

o
g

)

0%

50%

100%

150%

200%

250%

300%

C
P

U
 L

o
a
d

 [
%

]

1

10

100

1000

10000

100000
C

o
n

te
x
t

S
w

it
c
h

e
s
 /
 s

e
c

(l

o
g

)

0%

50%

100%

150%

200%

250%

300%

cpu load

RTP HTTP/read-write HTTP/sendfile iWARP

Figure 6.12: Direct protocol overhead comparison (200 clients at 5.3 Mbps).

and transmit the payload data accordingly. The amount of link bandwidth wasted
is also small as the size of the notification messages is negligible compared to the
payload of the stream.

6.5 Discussion

A VoD server offering HD media based on RTP suffers from a high interrupt-
and context switching rate as well as a CPU overhead which is exponential to the
number of clients served. By using HTTP instead, the overhead can be reduced
significantly (see Figure 6.12). Applying the sendfile mechanism to HTTP brings
the CPU load down to a linear increase with the number of clients, which is
efficient enough to saturate the 10 GbE link as long as the NIC is equipped with
a true DMA engine. With our iWARP-based protocol, we can reduce the context
switching overhead again by an order of magnitude compared with HTTP and
bring the CPU load down to a small constant.

Furthermore, to allow a parallel serving of all clients, HTTP requires each
stream to be processed by a separate thread. This results in a potential waste
of system resources and necessitates an increased number of context switches.
In contrast, when using RDMA, a single thread is sufficient as the connection
multiplexing is performed by the RNIC.

Our iWARP-based VoD solution using an RNIC is able to significantly reduce
the interrupt- and the context switching rate not only on the server but also on
the client. This is highly desirable as it leads to a much lower cache pollution, thus
improving local application processing performance. Furthermore, a fully offloaded
RDMA stack eliminates the copy overhead on both sides, which is important when

152 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

streaming data at even higher rates (e.g., at several Gbps per client).
The drawback of the RDMA solution is that the server must be equipped with

an RNIC. In addition to that, also the clients must have RDMA stack support—
but here Softiwarp may be sufficient. As the RDMA semantic is different from
the common socket API, major application adaptations are needed. Furthermore,
the physical memory is the limiting factor for the total size of the data to be
transmitted. However, this limitation can be circumvented by applying local buffer
replacement strategies (e.g., a local pyramid broadcast [VI96]) or by attaching the
server to a RamSan system [ram], which offers up to several hundred gigabytes of
DDR memory accessible through RDMA.

An important advantage of using RDMA is the possibility to combine client-
server control type interaction with the data transfer operation itself. By issuing
RDMA Reads at appropriate offsets, the client is able to seek through the data
set without frequent tear down and re-establishment of the data channel. The
server application is not even involved when the client changes the movie playback
position. Using a socket-based approach, each seek would close the current TCP
stream on both sides and re-open the media with the new offset. Another strong
server scalability advantage of the RDMA approach is the complete avoidance of
a dedicated control channel between the server and each client, which is otherwise
typically implemented by just another peer-to-peer socket connection.

6.6 Related Work

Already in the early 90s, Fall and Pasquale suggested solutions to shortcut data
paths within the operating system [FP93]. They proposed splice, a new UNIX
system call, which allows moving data between two file descriptors while avoiding
copies between kernel- and user address space. Using splice helps to reduce CPU
load as well as the number of context switches and is closely related to the sendfile
optimization we have analyzed. The same authors showed the applicability of the
splice system call to continuous-media playback over UDP transport [FP94]. As
we have seen, UDP used to be a valid choice for media transmissions at low data
rates, but it has to be reconsidered when moving to the high bit rates required by
full HD media content.

Another copy avoidance solution for on-demand media servers is presented by
Halvorsen et al. [HJS+02]. A shared Memory Region is used between the hard
drive where the media data reside and the network interface in order to create a
specialized zero-copy data path from the storage medium to the communication
system. This shared buffer is created at stream setup time and remains stati-
cally allocated throughout the transmission. The proposed zero-copy mechanism
only assures that the data is not copied until it is handed over to the network

6.7. SUMMARY 153

subsystem. The further steps are outside the scope of this work. Although their
goal is similar, our solutions are fundamentally different. They suggest UDP as a
suitable transport layer and restrict their applicability to non-live media content.
Furthermore the data is sent out only in fixed periodic intervals, whereas we offer
a true on-demand solution with a VCR-like media control.

Also Miller et al. [MKT98] have presented an I/O system design targeted at
data streaming applications. Data streaming is discussed on a variety of levels, not
limited to network communication. A global buffer cache is suggested to achieve
zero-copy data propagation (through reference passing) within the operating sys-
tem.

Further extensive research has been conducted on how to distribute media
over the Internet based on the assumption that the available bandwidth is lim-
ited [SFLG00,NZ02]. Wu et al. [WHZ+01] and Plagemann et al. [PGHA00] have
presented detailed discussions of the different challenges posed by designing mech-
anisms and protocols for Internet streaming services. In our work, we assume the
bandwidth to be sufficient and investigate server-side limitations.

Peer-to-peer (P2P) driven streaming systems are in the focus of many research
groups in order to address the issue of sending media data to a large number
of nodes over the (relatively) limited bandwidth on the Internet. While iWARP
could be used to replace the in-kernel TCP stack of most P2P systems used on
the Internet, we argue that it does not make sense for two main reasons. First,
RDMA is only beneficial once the throughput is high enough—this is not yet the
case in today’s Internet communication infrastructure. Second, every peer would
have to be equipped with an RNIC to profit from the hardware acceleration which
is rather costly. P2P systems scale up to overlay networks beyond our 1000 clients.
If we need to support more simultaneous clients, we can readily plug more RNICs
into our server as we are not limited by the CPU. At some point, however, the
memory bus starts to become the bottleneck (the next chapter will present an
example where this is the case). A second option (which is prevalent in practice
today) to increase the scalability is to add more server machines.

6.7 Summary

We have analyzed and shown by experiment why server-side copy avoidance to-
gether with a client-driven protocol are key to achieving good scalability when
offering HD media content from a single server to a large number of clients. By
proposing an iWARP-based application protocol, we have shown how an efficient
VRC-like media control can be implemented for video-on-demand as well as real-
time streaming services and demonstrated its significant performance improve-
ments. Finally we have highlighted its advantages and trade-offs compared to the

154 CHAPTER 6. SERVER-EFFICIENT HD MEDIA DISSEMINATION

sendfile zero-copy mechanism offered by the Linux kernel as well as TCP offload
engines implemented in hardware.

6.8 Outlook

Having demonstrated the potential of iWARP/RDMA on the example of provid-
ing data at a high aggregate rate from a single server machine to large number
of clients (1-to-many scenario), the next chapter will focus on a different topology
where we have a peer-to-peer like setup with high data rates between any two com-
municating nodes. We will also switch the application domain again and present
an example of how iWARP/RDMA can be leveraged to accelerate distributed
database processing.

7
The Data Roundabout -

High-Speed Networks for Distributed
Database Processing

The last application domain in this thesis for which we are going to assess the
benefit of using iWARP/RDMA is distributed databases. With regard to the pre-
vious two chapters, the world of databases has quite different characteristics which
provide further insight and understanding of the value added by iWARP/RDMA.
The particular database architecture which we are going to present in this chapter
is no longer based on client/server communication but follows the peer-to-peer
principle where each communicating host is facing a roughly equal work load. As
we are continuously pumping a large volume of data through the peer-to-peer over-
lay, we see the benefit no only with regard to CPU utilization but also in terms
of a reduced memory bus contention. Last but not least, this chapter hints at the
potential of applying iWARP/RDMA to cloud-style communication environments.

7.1 Introduction

With great distributed compute power at everyone’s fingertips, either in terms of
real hardware or provided by a cloud infrastructure, user expectations have grown
high. Even complex ad-hoc queries on the data are expected to be answered in
interactive time by automatically and optimally utilizing the power of the resources

155

156 CHAPTER 7. THE DATA ROUNDABOUT

at hand.
In this work, we look at a particular part of the challenge to meet these expec-

tations. We apply iWARP/RDMA with its high-speed characteristics to process
database queries entirely in distributed main memory in order to reach throughput
rates that are beyond what commodity disks or conventional networks can provide.

Unlike in most previous distributed DB architectures, network communication
is no longer to be avoided at all cost as data transfers have become significantly
more efficient—in terms of latency and throughput—and do no longer induce much
overhead on the hosts. Therefore, rather than trying to avoid communication at
all cost, we leverage the available bandwidth.

Thanks to the efficient, hardware accelerated network communication offered
by the RNICs, fundamentally new distributed database architectures can be con-
sidered. We study the opportunities offered from the perspective of the core
database algorithms using a simple topological network structure: we propose
the Data Roundabout, a ring-shaped network consisting of several machines. Each
of them stores a portion of the complete data set in main memory and continuously
lets it circulate around the ring.

The broader context of our work is the Data Cyclotron project, a joint effort
between CWI Amsterdam and ETH Zurich to explore non-traditional architectures
to cope with the ever-increasing requirements from large-scale business intelligence
and eScience applications. Given the availability of RDMA, our approach is to re-
think distributed database processing and consider the network as our friend, not
as an enemy to be evaded at all cost.

7.1.1 State of the Art

The technology behind most distributed database systems today dates back to
early prototypes in which the underlying assumptions and the approaches taken are
largely a consequence of the network environments at that time. Most importantly,
in the early days network communication was fairly slow (3 Mb/s were considered
a “high-speed” network) and thus treated as a major cost factor in distributed
query processing, if not the only one considered at all [BGW+81]. In a distributed
setting, the primary goal of join processing techniques, was to avoid network com-
munication, often at the expense of additional CPU work [BC81,ML86].

Another consequence of the slow networks from back then is the generic ar-
chitecture that has become pervasive in distributed query processing: all data is
partitioned over available network hosts (often only few of them) and remains
there mostly static. A notable exception are the scalable distributed data struc-
tures [LNS96], which adapt to the arrival of data. Queries, by contrast, are shipped
between hosts during query processing, usually along with state information or
intermediate query results. This processing model is a good fit for classical work-

7.1. INTRODUCTION 157

loads, where most queries are known in advance (the data can be partitioned
accordingly) and involve only few, simple join predicates.

Today, roughly three decades later, the hardware landscape and application
demands have changed significantly. Even commodity networks provide extremely
high throughput and low latency and, thanks to hardware acceleration, incur only
negligible communication cost. Real-time data mining or business intelligence
applications have shifted the challenges in distributed large-volume data processing
towards complex queries [DDF+09] and reflect an increasing importance of ad-hoc
queries. Particularly the former class of queries often depends on functionality
beyond foreign-key lookups, such as band or similarity joins.

Another shift is driven by economic forces. In the spirit of cloud computing,
large installations of commodity off-the-shelf systems are becoming preferred over
few high-performance machines. Cost effectiveness, fault tolerance, and scalability
are achieved by adding and removing machines on-demand. Cloud-style opera-
tional models no longer require the dedication of machines for keeping specific
data or performing specific tasks. Instead, they strive for trivial replacement,
addition, or removal of network hosts as well as a low overall system complexity.

7.1.2 Problem Statement

The aim of the Data Roundabout architecture is to provide such cloud-style behav-
ior for distributed database query processing. In particular, we strive for a fully
decentralized design featuring

� a low management overhead,

� good scalability and

� an effective resource utilization.

The ultimate goal is to create a flexible, self-managing system which offers low
query response times even for complex ad-hoc queries.

The Data Roundabout architecture is not limited to a specific query type. We
nevertheless restrict the discussion presented in this chapter to processing join
operations with special focus on data sets which are too large to fit into the main
memory of a single machine and thus either have to be stored on slower secondary
storage or distributed among a number of interconnected nodes forming a network.

7.1.3 Contributions

The main contributions of this chapter are two-fold:

158 CHAPTER 7. THE DATA ROUNDABOUT

� First, we present the Data Roundabout—a novel distributed database ar-
chitecture based on iWARP/RDMA—that is able to exploit the computing
resources at hand offering good performance and scalability characteristics.
We review the design and implementation with the RDMA limitations, dis-
cussed in Chapter 4, in mind. A thorough performance evaluation of the
Data Roundabout is provided.

� Second, we add a number of join algorithms on top of the Data Roundabout
to assess the benefit for database query processing. Any traditional (single-
host) join algorithm can be run in our distributed setup, relying on the
fast interconnects to transfer the data. In another in-depth evaluation, we
analyze and illustrate the implications of the Data Roundabout based join
execution depending on the problem type and compare it with local join
algorithms. Also, we assess the iWARP/RDMA benefit by contrasting it
with plain TCP/IP.

7.1.4 Chapter Overview

This chapter is organized as follows. In the upcoming section, we provide some
background on how large joins are processed in conventional setups and list aspects
which make RDMA interesting for distributed database processing. Section 7.3
then introduces and evaluates our Data Roundabout transport before we add a
real database operation (the join) to it in Section 7.4. The benefits with respect
to distributed join processing on the Data Roundabout are then assessed in Sec-
tions 7.5 and 7.6. Section 7.7 provides a look into the neighborhood and Section 7.8
concludes the chapter.

7.2 Background

This section provides background information on distributed join processing which
motivates our Data Roundabout design presented later in the chapter. We also
reason about how RDMA can be beneficial in the distributed database context.

7.2.1 Processing Large Joins in Distributed Main Memory

As mentioned in the introduction, we look at the problem of calculating the join
resultR on S for the input relationsR and S with focus on the particular case where
the relations R and S are too large to fit into the main memory of a single machine
but are small enough be kept in some form of distributed main memory spread
across a number of machines. So instead of storing the relations on the (slow) local

7.2. BACKGROUND 159

hard disk(s), we split them into roughly equally sized chunks and distribute those
among a cluster of machines1 connected through an iWARP/RDMA network.

Before going into the details of the Data Roundabout architecture, we motivate
our design by illustrating how a large join operation can be executed in traditional
systems.

Small Joins on a Single Machine

Let us start the discussion with the assumption that all input data fit into the
memory of a single machine in order to get a point of reference for the distributed
solution discussed subsequently.

Leaving pre-processing costs (e.g., hashing or sorting) aside, the time to per-
form a hash or merge join R on S on a single machine can be as small as

(|R|+ |S|) · in-memory join throughput

where |R| and |S| denote the sizes2 of R and S, respectively. In practice, the
in-memory join throughput often gets close to the physical bandwidth of the un-
derlying host memory bus.

Here and in the following, we disregard the costs for the materialization of
the result. Independent of the join processing technique, it would amount to
|R on S| · bandwidth of main memory. In order to validate the output of our
algorithms while maximizing the amount of available memory for holding the input
relations, we only count the tuples matching the join predicate.

Large Joins on a Single Machine

When the input relations are larger than the available main memory, any single-
host algorithm has to resort to secondary storage as temporary buffer (typically a
hard disk drive). Chances are that the best way of processing the join is then to
use a block nested loops join. It reads in turn (sufficiently large) chunks of each
relation into main memory for performing the join until the whole data set has
been processed (see Algorithm 7.1):

The available amount of main memory determines the chunk size for the input
relations. This means that for a given buffer size MS which holds a chunk Si ∈ S,
we will perform n = d|S|/MSe iterations of the outer loop. For every iteration of the
outer loop (i.e., n times), we read the whole relation R into memory to execute
the inner loop (the actual join) on the current chunk Si. This results in a disk

1In the following discussion, the terms machine, host and node are used interchangeably.
2The size is either the number of tuples within the relation or the physical size in bytes of the

relation.

160 CHAPTER 7. THE DATA ROUNDABOUT

Algorithm 7.1: Block Nested Loops Join

in : relations R and S (both residing on disk)
out: R on S

foreach block Si ∈ S do1

read Si from disk ;2

foreach block Rj ∈ R do3

read Rj from disk ;4

compute Rj on Si in memory ;5

I/O cost of (n · |R|+ |S|).3 Since n is proportional to |S|, the total disk I/O cost
incurred to evaluate R on S is roughly proportional to

(|R| · |S|) · disk throughput.

Compared to the I/O cost for small joins we now face the product of the relation
sizes instead of the sum. Furthermore, the disk throughput is significantly lower
than the memory bus bandwidth. Being forced to use the disk as intermediate
buffer is thus highly undesirable.

Large Joins on Multiple Machines

One way of reducing the disk I/O is to parallelize the outer loop of Algorithm 7.1
across multiple hosts. With n hosts available, we need to run only one outer loop
iteration on each host and thus leverage the total available main memory. To this
end, we have to provide each host Hi with its respective piece Si of the input
relation S and with the entire relation R.4 The necessary network transfers are
illustrated in Figure 7.1. Each host receives its share of S plus the full content of
R in order to calculate its sub-result R on Si. Note that since we compute the join
in a distributed way now, the join result R on S ends up as a fragmented relation,
distributed over all nodes.

With this approach, we trade the network load for less disk I/O since network
I/O is significantly cheaper than disk I/O these days.5 The total I/O cost that
the sender Hs has to bear in this approach is

(n · |R|+ |S|) · network throughput.
3R and S are assumed to be residing on secondary storage already and we do not account for

that extra I/O cost to initially write them to disk.
4We assume that this is done from some host Hs which acts as the data source. The algorithm

could also trivially be adapted to fetch the source data from one of the processing hosts Hi.
5While a typical value for disk bandwidth is ≈ 100 MB/s (or a multiple in RAID configura-

tions), modern interconnects can provide 1.25 GB/s (10 Gb Ethernet) and beyond.

7.2. BACKGROUND 161

Hs

H1 H2 H3 Hn

+
S1

R +
S
n

R

Figure 7.1: Distributed block nested loops join. The data source Hs sends to each
host Hi the respective chunk Si of S as well as the full relation R.

Hs

H1 H2 H3 Hn

+
S1

R S
n

Rn R1Rn-1 Rn-2

Figure 7.2: Chaining all processing hosts Hi decreases the network bottleneck at
the data source and leverages the available inter-host bandwidth.

The benefit of this approach compared to the previous one (residing to secondary
storage) is two-fold. First, we are bound by the (fast) network throughput rather
than by the (slower) disk throughput. Second, the join processing is parallelized
across all machines. We will see the practical effects of this in the evaluation
presented later in this chapter.

Unfortunately, transmitting the inner join relation R multiple times can cause
a serious bottleneck at host Hs. In the following section, we present a first opti-
mization to address this issue.

A Smarter Way to Parallelize

We can decrease the bottleneck at the data source by taking advantage of the
available network bandwidth between the processing hosts Hi. We can do this by
chaining all Hi together as illustrated in Figure 7.2.

In this configuration, Hs sends the chunks Si ∈ S to each respective host as
before. The relation R, however, is now also split into chunks Rj ∈ R and sent
only to the first processing host H1. There, we evaluate the local fragment of the
join R on S1 by calculating Rj on S1 for all Rj ∈ R, and forward the chunks Rj to
the next processing host H2 using the network link H1 → H2, and so forth. R is
split into chunks Rj for two reasons. First, because the whole relation might be too
large to fit into the main memory of a single machine and second, for leveraging

162 CHAPTER 7. THE DATA ROUNDABOUT

the pipeline. The subsequent hosts in the chain cannot start the processing until
they receive some part of R. Thus the join execution can only run in parallel when
all the machines involved have their Si plus some Rj ready to be joined. Hence,
each node Hi (i < n) now executes Algorithm 7.2 (Hn simply drops all pieces Rj

after processing).

Algorithm 7.2: Smarter Distributed Join

in : relations R and Si (where R is received in chunks Rj)
out: R on Si (R on S is available distributed across all hosts)

receive Si from Hs ;1

foreach block Rj received either from Hs or Hi−1 do2

compute Rj on Si in memory ;3

forward Rj to host Hi+1 ;4

The total network traffic on Hs (which still remains the bottleneck in terms of
network I/O volume) is now reduced to

(|R|+ |S|) · network throughput.

The Algorithm 7.2 has another advantages (besides the I/O load reduction of
the source) compared to the data distribution model depicted in Figure 7.1: the
join execution can be better parallelized thanks to the pipelined data distribution
of the individual chunks Rj as there is no contention on a single link.

Yet, there is a small penalty that we might have to pay: to reach the last node
in the chain (Hn), the chunks of Rj ∈ R now have to be propagated across all n−1
hosts sitting in front of Hn. However, it depends on the implementation details
whether the penalty is actually observable or not because also in the approach
discussed in the previous section, we have to serve each host Hi (including Hn)
with data. The lowest propagation delay is achieved by swapping lines 3 and 4 in
Algorithm 7.2. As we will discuss in the next section, iWARP/RDMA allows us
to overlap the join processing (line 3) with the data propagation logic (line 4) and
thus can hide the communication delay in certain cases [BBC+03].

In Section 7.3, we describe how our Data Roundabout approach pushes this
parallelization effort even further to support entire query plans to be executed in
a distributed fashion. Before that, we cast some light on the potential benefits of
iWARP/RDMA with respect to distributed databases.

7.2. BACKGROUND 163

7.2.2 RDMA Benefits for Distributed Databases

Application Requirements

In the context outlined above, we face requirements that are different from the
ones discussed in the previous chapter on media dissemination. The most appar-
ent one is that the distributed DB application domain is not as sensitive to jitter
and delay as is media streaming. Therefore, we consider a network topology which
is not client/server (or master/slave) based but follows the peer-to-peer principle.
Furthermore, all hosts Hi (think clients in Chapter 6) here need to receive almost
the same data. In the distributed join processing approach illustrated in the pre-
vious sections, each host Hi requires its individual share Si plus the (much larger)
common relation R whereas the clients in the video-on-demand application can be
at arbitrary playback positions within the stream and thus require different data
sets.

Efficiently Shipping Large Data Volumes over the Network

Both application scenarios (databases and streaming) involve large amounts of
data to be transferred between communication partners. In the database scenario,
the data volume of each transfer can be in the order of the size of the available host
memory—if the data set was smaller, we would execute the database operations
on a single host. We have illustrated that resorting to secondary storage is less
attractive than distributing the data across a number of hosts which are connected
to a high-throughput network. The iWARP/RDMA infrastructure at hand offers
10 Gbps which is faster than commodity disk throughput.

For the motivation of this work, it is important to realize that the zero-copy
and direct data placement techniques offered by iWARP/RDMA allow us to ship
these large data volumes efficiently (in terms of host involvement). We would like
to recall the rule of thumb here where 1 Gbps of data throughput requires about 1
GHz of CPU power when using conventional TCP/IP communication. The RDMA
benefit compared to TCP/IP will be assessed in the upcoming Section 7.6.

The second benefit of RDMA besides CPU cost savings is that it also signifi-
cantly reduces the memory bus load as the data is directly transferred to/from its
location in main memory using intra-host DMA. Therefore, the data crosses the
memory bus only once per transfer. Conventional, socket-based communication
may lead to noticeable contention on the memory bus under high network I/O.
Adding additional CPU cores to the system is thus not a replacement for RDMA.
While this was not critical in the systems presented in the previous chapters, it is
vital for the Data Roundabout as we will see in the evaluation.

For these two reasons, the Data Roundabout does largely depend on the avail-
ability of RNICs because we run in a peer-to-peer setup where we expect a roughly

164 CHAPTER 7. THE DATA ROUNDABOUT

equal work load on each host in the ring. Softiwarp is hence not an option here.
Thanks to the RNICs, the overhead on the CPU(s) as well as on the memory bus
is thus significantly reduced6 and we have most of the local resources still available
for database operation execution even in the case where we utilize the network
heavily.

Hiding the Data Transfers by Overlapping them with Computation

The join processing on each host is performed on subsets of the initial relations
(i.e., ∀j ∈ {1..n} execute Rj on Si) in order to produce the sub-result R on Si. As
mentioned, Algorithm 7.2 allows the overlapping of steps 3 and 4 when RDMA is
used as the underlying transport. For that, we forward7 the current chunk Rj to
the next host Hi+1 (line 4) while we compute the join (line 3). RDMA does readily
provide us with the asynchronous interface enabling the overlap of communication
(forwarding chunks Rj) and computation (joining chunks Rj with Si) thanks to the
queue-based interaction between the verbs consumer and the underlying provider
(see Chapter 3).

7.3 The Data Roundabout Transport

As a starting point to explore novel architectures for their potential to meet the
requirements mentioned in the beginning of this chapter, we propose the Data
Roundabout which consists of a (potentially large) number of commodity systems
which are connected over high-speed RDMA connections to form a logical storage
ring structure. As we strive for a decentralized mode of operation, each node only
communicates with its two immediate neighbors in the ring and all the data is
forwarded in the same direction, say clockwise. We assume the combined main
memory of all participating hosts to be large enough to hold the hot set of the
database in a distributed fashion; other data may be kept in slow, distributed disk
space. Figure 7.3 shows a Data Roundabout of size six (i.e., one that consists of
six hosts).

A fundamental difference to classical distributed systems is that we keep the
queries and their state local and move base data over the network instead. In
fact, we keep the data circulating in the ring continuously. Queries remain local
to one or more nodes and pick necessary pieces of data as they flow by in the
ring. The intuition for this stems from the spinning disks. The Data Roundabout
is different from a disk in that it has not just one but potentially many read/write

6This is especially true for large data transfers of static size.
7Forwarding the data does not mean that we delete it locally. We only delete it once we have

calculated the join sub-result.

7.3. THE DATA ROUNDABOUT TRANSPORT 165

RD
MA

R
D
M
A

R
D
M
A

RDMA

R
D
M
A

R
D
M
A

Host H1

Host H2

Host H3

Host H4

Host H5

Host H6

DATA

Figure 7.3: The Data Roundabout. Hosts Hi are organized as a ring, connected by
high-speed RDMA links. The data flows continuously around the ring.

heads (each participating node is one). Furthermore, the time of circulation as
well as the total capacity can be changed by expanding or shrinking the Data
Roundabout size. With an increasing size, we also have more processors available
for the query evaluation. Furthermore, as each node plays an equivalent role in the
overall system, there is no bottleneck node (or every node is a bottleneck node)
which is important for achieving good scalability.

Taking full advantage of the idea of rotating data, however, requires certain
care in the algorithm design.

7.3.1 Considerations for Applying RDMA

As we have shown in Chapter 4, not every application can take full advantage of
iWARP/RDMA. Rather, applications have to respect the characteristics of RDMA
to take full advantage of the hardware-accelerated transport. We briefly repeat
the ones relevant for the current context.

First, all buffers (for receiving and for sending data) have to be sized and
registered with the network card before starting an RDMA-based data exchange.
This enables the network interface card to access the application memory through
its DMA engine without any involvement of the operating system. The registration
process is rather CPU intensive as we have seen in Chapter 4 since it involves
several address translations and because the memory must be pinned and protected

166 CHAPTER 7. THE DATA ROUNDABOUT

Query Processor

signal

signalsignal

RX TX

memory DATA OUTDATA IN

Figure 7.4: Inner workings of a Data Roundabout node. The data is stored in
a ring buffer residing in main memory. Three entities operate on the data in a
coordinated fashion: the Query Processor, the receiver (RX) and the transmitter
(TX).

from being swapped out to disk. Whenever speed is the major concern, the cost
of registration renders on-demand allocation and registration of memory buffers
undesirable. In the upcoming section, we will present a buffer management scheme
which is initialized in the setup phase and then remains fixed throughout the course
of operation to minimize the buffer (re-)allocation overhead.

Second, each data transfer is initiated by posting Work Requests to the RNIC, a
control task that still has to be performed by the CPU. To keep the resulting CPU
overhead low, it is desirable to transfer the data in large chunks which requires
fewer Work Requests to be posted. Also the RNIC itself is able to handle large
data transfers more efficiently than small ones (cf. Chapter 3).

7.3.2 The Data Roundabout Design on RDMA

In the following, we introduce the design of the individual Data Roundabout nodes.
The description applies to all the nodes as none of them is assigned a special role
or task. A high-level picture of the inner workings of a Data Roundabout node is
given in Figure 7.4.

Data Buffer

Considering the aforementioned memory registration limitations, we have designed
each node in the Data Roundabout to be equipped with a statically allocated ring

7.3. THE DATA ROUNDABOUT TRANSPORT 167

of memory buffers to hold the data rotating in the ring (see Figure 7.4).
All of the ring buffer elements are sized and registered in the beginning so that

they can be reused at join execution time. By this, we eliminate the need for
memory registration at runtime and thereby achieve an optimal transport effi-
ciency. Furthermore, each of these buffer elements is of the exact same size (across
all the nodes within a given Data Roundabout) to reduce the control overhead.
However, this means that we sometimes send too much data (in the case where
a buffer element is not completely filled). At a bandwidth of 10 Gbps, it pays
off (up to a certain extent) to send (possibly) invalid data at the end of to the
payload rather than investing another round-trip time to negotiate the correct size
of the payload to be transferred. As RDMA works best on large buffers, we al-
ways transfer a whole ring buffer element and not a single tuple, for instance (cf.
Figure 3.20).

In-Host Data Propagation

The data propagation within the hosts has been designed in an asynchronous way
involving the following three entities: a query processor, a receiver thread and a
transmitter thread. In Figure 7.4, these entities are referred to as Query Processor,
RX and TX, respectively.

The query processor is responsible for evaluating the queries and operates on
one ring buffer element at a time. When it has finished processing the current
buffer, it asks for that buffer to be forwarded by the transmitter and continues
with the next buffer while the transmitter is forwarding the processed data. If the
next buffer has already been filled by the receiver, the query processor can start
processing it immediately. Notifications between these three entities (e.g., when a
new buffer has been filled or an old one has been sent out and has become ready
for the next iteration) is implemented through signals.

Overlapping communication and computation is a key part of the Data Round-
about architecture because it hides the data propagation delay of the network.
Furthermore, since the CPU and memory bus overhead caused by RDMA com-
munication is low, the query processor is not hindered by the concurrent data
transfers. Also, this asynchronous thread composition helps to smoothen differ-
ences in processing times and jitter on the network because there are usually some
buffers before and after the one that the query processor is currently working on.

Forwarding the Data

The data propagation is driven by the query processor. We have therefore designed
it in a push-based manner where each node pushes the processed data to the next
node in the ring. Since we are facing a unidirectional data flow, we can not

168 CHAPTER 7. THE DATA ROUNDABOUT

TX RX
memmem

1

3

4

2

Figure 7.5: Link protocol applied when forwarding a ring buffer element. The
transmitter requests the data propagation before sending the buffer to assure flow
control.

piggyback ring buffer status updates back to the previous node. Thus, there is no
implicit knowledge of how many buffers are available at the next node. In order
to prevent the receiving node from running out of ring buffer elements, each node
asks for permission before forwarding a buffer and delays the data transmission
until it gets the confirmation for buffer space being available. This results in the
three-way link protocol depicted in Figure 7.5: first, the transmitter requests to
send the next buffer, then, the receiver checks the local ring buffer and confirms
the request upon buffer availability. Finally, the transmitter forwards the payload
from the buffer using an RDMA data transfer.

While this data exchange pattern seems rather cumbersome, it provides an
implicit flow control mechanism and can thereby operate easily in a fully decen-
tralized fashion. As we will see in the evaluation of the Data Roundabout, the
performance penalty is negligible when transferring the data in chunks which are
large enough.

The envisioned data propagation scheme requires some meta data to be at-
tached to each buffer. In order to avoid mixing the payload with this meta data
(which would render the database operation logic more complicated), we utilize
the scatter-gather feature offered by RDMA in combination with dedicated control
buffers (see Figure 7.6). This means that each data buffer is implicitly accompa-
nied by a control buffer which can carry data-specific information such as where
the data is originated or what type of data it is. Thanks to the scatter-gather
feature, these control buffers can be of any size and reside anywhere within main
memory (however, they all have to be of the same size in our setup).

With regard to the RDMA data transfer operation, we have decided to use
Send/Receive rather than RDMA Read or RDMA Write because the performance
is about the same (Chapter 3) and the two-sided semantic is better suited for
the aforementioned control buffer exchange. Each node can thus decide on its
own where inbound payload and control information are sent out from and where

7.3. THE DATA ROUNDABOUT TRANSPORT 169

memory TX RX memory

Send(

d2,c2)

Receive(

d5, c5)
d2 c2

d4

d5

d6 d2

d3

d1

c4

c3

c2c6

c1

c5
d4

d5

d6 d2

d3

d1

c4

c3

c2

c5

c6

c1

Figure 7.6: The Data Roundabout utilizes the scatter-gather mechanism provided
by RDMA to automatically attach control information to each data buffer. dX
refer to data buffers and cX designate the corresponding control buffers.

they are received to. Applying one-sided communication would be unnatural and
more complicated in this scenario because additional buffer advertisements would
be necessary. We thus find that the one-sided operations are not beneficial in all
cases (see Chapter 6 for reasons to use one-sided communication).

Our Data Roundabout design satisfies the high-level requirements sketched in
the beginning of this chapter. The ring is built from commodity systems and its
design and data flow pattern are deliberately kept simple, in order to ease mainte-
nance and scalability. Hence, a Data Roundabout system can trivially be extended
or shrunken, depending on CPU and/or main memory demand. Furthermore,
we do not partition data based on a priori workload knowledge, which lets us
seamlessly handle ad-hoc queries.

7.3.3 Data Roundabout Performance Characteristics

We now look closer into what is feasible in practice with the Data Roundabout
transport. Before assessing the potential for evaluating database queries, we run
a micro benchmark on the ring network itself with the goal to identify the crit-
ical parameters that lead to efficient utilization of the resources at hand. We
are particularly interested in the cost incurred in terms of CPU load due to the
network communication as well as in the delay and throughput of different ring
configurations.

Test Environment

Our experiments use Data Roundabout instances of up to six network hosts (IBM
HS21 BladeServers), which is the maximum number of RDMA-equipped machines

170 CHAPTER 7. THE DATA ROUNDABOUT

0%

25%

50%

75%

100%

1B 16B 256B 4KB 64KB 1MB 16MB 256MB

Buffer Size (log)

C
P

U
 L

o
a

d

0%

25%

50%

75%

100%

N
e

tw
o

rk
 U

ti
li
z
a

ti
o

n

CPU load

throughput

Figure 7.7: Good resource utilization requires large ring buffer elements.

we currently have available. The machines and the RNICs are the same as the
ones we have used in the previous chapters. Each of them has a quad core Intel
Xeon CPU running at 2.33 GHz, 32 KB L1 data cache and 32 KB L1 instruction
cache, 4 MB unified L2 cache and 6 GB of main memory. The BladeServers are
running Fedora Core 9 with a vanilla 2.6.27 Linux kernel.

Throughput

In order to get a significant performance advantage from distributing the queries
among several machines, we must be able to provide the CPU core(s) with enough
data to prevent them from stalling. The amount of data we can get to the cores
per second is limited by the throughput of our ring. According to the network
hardware, we can achieve up to 10 Gbps, full duplex.

Figure 7.7 shows the network utilization together with the CPU load induced
induced by the transport using ring buffer elements of various sizes. It can be seen,
that for small buffer elements, we are not able to make good use of the link and
furthermore are wasting most of the precious CPU cycles on the communication
due to the much higher frequency of Work Requests being posted to the RNIC
as well as due to the three-way link protocol presented in the previous section.
As soon as the buffers are larger than a critical minimal size (about 4 MB in our
setup), we utilize more than 90 % of the high-speed link while investing only few
CPU cycles (less than 3 %) in the data transfer. Compared to the figures presented
in Chapter 3, we see that the CPU load for small buffer sizes is significantly higher
and the link is saturated only for larger buffers. In the big picture, however, the

7.3. THE DATA ROUNDABOUT TRANSPORT 171

tendency is the same and the performance penalty paid due to the three-way link
protocol is negligible when the buffers are large enough.

This corresponds to the earlier finding that the ring buffer elements must have
a certain minimal size before we can leverage the computing and communication
resources at hand. Almost all of the CPU cycles are then available for query
processing and the data is being transferred at link speed yielding the lowest
overall transport delay. This is a good match for our scenario as we design for
workloads that are too large to fit into the main memory of a single host which
means that we have large data volumes circulate the ring.

In summary, the above implies that our decentralized, simple design is able to
make good use of the communication and computation resources at hand under
conditions which are met in our application scenario.

Loop Delay

The next issue to address is the optimal size of the Data Roundabout ring in terms
of the number of nodes. The lower bound is given by the size of the hot set of the
data: as we want to keep it all in distributed main memory, we must have sufficient
nodes such that the capacity of their combined main memory is sufficient.

In order to learn about the consequences of increasing the ring size and to
reason about the upper limit we run the following experiment: we let the data
perform a full loop around the ring and measure the overall delay until the data
returns to its original sender—we refer to that as the loop delay. It describes the
minimum time a node has to wait before having seen the complete rotating data
set exactly once.

Table 7.1 shows the loop delay for Data Roundabout rings of sizes between 2 and
6 nodes (not yet including any query processing). We have repeated the experiment
with data set sizes (contributed per node) ranging from 1 MB to 1 GB. The result
is as expected: every nodes increases the delay proportionally to the ring size
difference since we perform the data propagation in a store and forward fashion.
Naturally, the loop delay also increases with the total amount of circulating data
because each node forwards the whole set.

In terms of the upper bound, the above table confirms the expectation that it is
best to use the minimum number of nodes necessary to hold the hot set. It results
in the smallest loop delay and, therefore, in the lowest response time. However, the
table does not yet include the query processing time. Having the query processing
distributed over more nodes might result in a lower per-query execution time and
thus in a lower overall response time. The query execution is taken into account
in the evaluation part of the upcoming section.

We conclude that the size of the Data Roundabout leaves us with a trade-off:
Having more nodes allows us to use more resources for the query processing but

172 CHAPTER 7. THE DATA ROUNDABOUT

1 MB 16 MB 256 MB 1 GB

2 Nodes 2.2 ms 28.6 ms 453 ms 1808 ms
3 Nodes 3.3 ms 44.1 ms 699 ms 2794 ms
4 Nodes 4.3 ms 58.5 ms 925 ms 3697 ms
5 Nodes 5.4 ms 73.6 ms 1165 ms 4654 ms
6 Nodes 6.5 ms 88.0 ms 1394 ms 5567 ms

Table 7.1: Loop delay increases are proportional to the Data Roundabout size.

on the other hand also increases the loop delay of the data which determines the
lower bound for the overall response time.

Our Data Roundabout transport is now ready to be extended with database
queries. In the following, we are going to analyze and discuss its value for evalu-
ating joins on large data sets.

7.4 Revolutionary Distributed Join Processing

on the Data Roundabout

To effectively exploit the throughput opportunities offered by the Data Roundabout
architecture, algorithms on top of the transport layer have to adhere to a rather
stringent data flow pattern. We present a strategy that provides this data flow
pattern and enables us to compute arbitrary database joins in distributed main
memory over input data of arbitrary size.

In this section, we describe the inner workings of our join processing approach
on the Data Roundabout. We start by providing a high-level view and then con-
tinue with a number of selected algorithms. The benefit assessment will follow in
Section 7.5.

7.4.1 Problem Scenario

As introduced in Section 7.2, our focus is on the evaluation of a binary join R on S,
where both input relations are assumed to be too large to fit into the local memory
of a single machine. R and S together fit conveniently into the distributed memory
of a Data Roundabout network, however.

The join R on S is computed in a fully distributed fashion and its result is again
available as a distributed table. As such, the join output can readily be used as
input to subsequent processing in a larger query plan.

Although our experiments focus on equi-joins—thus demonstrate how the Data
Roundabout can be combined with efficient in-memory algorithms such as hash or

7.4. JOIN PROCESSING ON THE DATA ROUNDABOUT 173

sort-merge joins—we are not bound to equality predicates. Modern application
classes could use this flexibility to accelerate band joins or similarity joins, for
example.

The approach presented in Section 7.2.1 has minimized the amount of network
I/O necessary to process input data that originates from a single host (the data
source Hs). In practice, however, this data may already be spread across the nodes
(e.g., when coming from an earlier evaluation of a distributed join).

In the following, we thus assume that, prior to join processing, both input
tables are distributed over the network hosts Hi. We do not care how the data
is distributed, but we assume the distribution to be reasonably even. This as-
sumption is readily provided, for instance, in recent database prototypes for cloud
infrastructures such as HadoopDB [ABPA+09].

7.4.2 The Join Operation

The principle of how to perform joins on the Data Roundabout is illustrated in
Figure 7.8: one of the two relations, say S (partitioned into sub-relations Si), is
kept stationary on each node during processing while the fragments of the other
relation, say R (partitioned into sub-relations Rj), are rotating in the Data Round-
about. Like in the distributed join evaluation approach presented earlier (cf. Fig-
ure 7.2), the processing hosts Hi are forwarding the chunks Rj in one direction.
The main difference is that the last host Hn is connected back to the first host H1.
This closed loop allows the data to circulate around the ring several times if need
be.

All ring members (hosts Hi), join each fragment Rj flowing by against their
local piece of S (Si) locally using a commodity in-memory join algorithm. The
result of each Rj on Si is accumulated at every Hi and becomes part of the overall
join result. After one revolution of R, all hosts Hi have seen the full relation R and
have thus computed the partial join results R on Si. Since the Si are a partitioning
of S, the full join result R on S is now available as a distributed table spread across
all Hi (ready for further processing, as mentioned above).

The task of the Data Roundabout transport layer is to efficiently move the
rotating relation R around the network. As illustrated earlier in Section 7.3.2, the
transmitter and receiver asynchronously move the pieces Ri ∈ R in and out of the
hosts, attempting to keep the query processor busy at all times.

7.4.3 A Selection of Join Algorithms

Within a full revolution of input relation R, all possible combinations of fragments
Rj and Si of R and S, respectively, are co-located on some host once and then
combined to produce Rj on Si (as such, our join operates similar to a block nested

174 CHAPTER 7. THE DATA ROUNDABOUT

RD
MA

R
D
M
A

R
D
M
A

RDMA

R
D
M
A

R
D
M
A

Host H1

Host H2

Host H3

Host H4

Host H5

Host H6

S
4

R
4

S5
R5

S
6

R
6

S
3

R
3

S2
R2

S
1

R
1

Figure 7.8: Revolving join: Relation R circulates in the ring while S remains
stationary. Each node Hi calculates all joins Rj on Si.

loops join [FGKT09]). The Data Roundabout can thus be used with arbitrary
implementations of on and support arbitrary join predicates.

Since we strive for fully distributed in-memory processing, we focus on join al-
gorithms that are known to perform well in main memory-based setups. We have
therefore ported the sophisticated MonetDB implementations of the partitioned
hash join and sort-merge join to our Data Roundabout setup. The hash-based
join algorithm inherently provides support only for equi-joins, while our imple-
mentation of the sort-merge join can also handle band joins. For all other join
predicates (e.g., similarity joins), our system falls back to an implementation of
nested loops join.

We have chosen to present these three join algorithms because each of them
reveals some interesting insight about the implications of using the ring network-
structure for query processing.

Partitioned Hash Join

All of the index-based join algorithms which we are going to discuss, operate in
two phases. In the first phase, the setup phase, the index structure for the data is
generated. There is no inter-node communication in this phase. During the second
phase, the join phase, the data is rotating and the join result is being calculated
based on the index.

7.4. JOIN PROCESSING ON THE DATA ROUNDABOUT 175

Our implementation of partitioned hash join is derived from the radix join
algorithm [MBK02] as found in the most recent distribution of the MonetDB
system.8 The implementation is carefully tuned to exploit the cache characteristics
of modern CPU hardware, including the size of the on-chip L2 cache and the size
of an L2 cache line.

During the setup phase we partition all input data and create hash tables on
the partitions of the stationary in-memory join argument Si. The subsequent join
phase then scans partitions of Rj and probes into hash tables of the Si partitions.

Each host partitions the two local input chunks Rj and Si into fragments rj,k

and si,k using the same hash function on their join keys. The goal is to achieve
a partitioning where each piece si,k of the stationary chunk Si and an associated
hash table fit into the L2 CPU cache. Such a partitioning makes the subsequent
join phase (that uses a standard hash join to scan rj,k and probe into a hash table
on si,k) particularly cache-efficient, since all hash probes can be handled fully by
the L2 cache. For details refer to the work by Manegold et al. [MBK02].

The join phase of our partitioned hash join can straightforwardly exploit the
parallelism provided by modern multi-core systems by computing the disjoint
rj,k on si,k and rj,l on si,l on separate CPU cores.

Sort-Merge Join

Sort-merge join operates in two phases as well. The setup phase here involves
sorting both input fragments by their join keys. During the join phase, the sorted
fragments are scanned in parallel and “merged” by aligning matches or skipping
forward on mismatches. Although sorting incurs an additional cost over the sim-
pler partitioning in partitioned hash join, the join phase of sort-merge join favors
an even more cache-efficient (strictly sequential) access pattern and can be imple-
mented to readily support band joins or inequality predicates.

Much like in MonetDB, our implementation relies on an efficient implementa-
tion of qsort in the C library, and we leverage available parallelism by sorting both
input fragments (Ri and Si) in parallel. The join phase also runs multi-threaded:
We split the Rj into a number of non-overlapping sub-partitions (rj,k) equal to the
number of cores in the system. Individual threads then join the stationary Si with
one such piece of Rj.

Nested Loops

As a fall-back option and for assessing also non-indexed joins on the Data Round-
about, we have implemented a simple nested loops join. For the nested loops
algorithm, there is no setup phase and the join phase is essentially a sequential

8Available since release Nov_2009.

176 CHAPTER 7. THE DATA ROUNDABOUT

scan over both relations. This yields a complexity in the order of O(|R| · |S|). The
advantage of this simple nested loops join is that it allows for similarity joins. Fur-
thermore, it features interesting scalability properties with increasing computing
resources as we will see in the evaluation.

7.4.4 Interacting with the Revolving Join

The descriptions of the algorithms above assumed that only a single join Rj on Si

had to be evaluated. Such an evaluation involves the execution of both join phases:
hashing/sorting and joining.

In practice, our join implementations see the same input data over and over
again since each host Hi calculates its result R on Si by calculating Rj on Si for all
Rj flowing by in the ring. It thus makes sense to invoke the setup phase of either
join implementation only once, then re-use its output during the full execution
of the join. The effort spent in the setup phase is then amortized over multiple
executions of the join phase. We can do so by sending access structures or re-
organized data (sorted or partitioned) over the Data Roundabout transport layer.

This is an instance where we can exploit the bandwidth provided by our
RDMA transport mechanism. Rather than investing CPU cycles to reduce net-
work traffic—the common strategy in existing systems—we spend some network
capacity to save CPU work. Sometimes, the Data Roundabout system may thus
suggest a different balance between the efforts spent on pre-processing and query
evaluation. We will assess and discuss such trade-offs in more detail based on
experimental evidence in the following section.

7.5 Experimental Assessment of the Revolving

Joins

This section shows the Data Roundabout in action performing joins. A discussion
of its characteristical features is provided. The test environment is the same as in
Section 7.3.3.

7.5.1 Distributing the Join Evaluation

First, we investigate how well we are able to leverage the resources at hand with
the partitioned hash join. To that end, we have generated input relations R and S
that are just about large enough to fit into the main memory of a single machine
(140 million tuples per relation with 12 bytes per tuple;9 this results in a total

9The 12 bytes consist of 4 bytes for the tuple ID (join key) plus 8 bytes random payload.

7.5. EXPERIMENTAL ASSESSMENT OF THE REVOLVING JOINS 177

0

4

8

12

1 2 3 4 5 6

Ring Size [#Nodes]

W
a
ll
-c

lo
c
k
 T

im
e

[s

] Join

Setup

single host performance

2.7

8.3

4.2
2.8

2.1 1.6 1.4

Figure 7.9: Joining a fixed data set on an increasing number of nodes.

data volume of 2 × 1.6 GB). The 4-byte join key is populated with uniformly
distributed integer numbers.

Figure 7.9 shows the execution times observed when computing the join R on S
on a single host and moving on to a distributed evaluation with up to six network
hosts on the Data Roundabout. In the distributed case, we have spread all the
data evenly across all network hosts before performing the join.

The most apparent observation is that the distribution of the join consider-
ably reduces the overall join processing time. Another particular observation
is the non-existence of synchronization time, i.e., the overhead imposed by the
iWARP/RDMA transport. Both observations indicate good resource utilization
properties.

Data Roundabout Overhead. A design goal of Data Roundabout is to leverage
RDMA such that network communication can be fully overlapped with data pro-
cessing. Our measurements confirm that, indeed, the Data Roundabout is able to
fully hide the network cost and perform all communication parallel to the actual
join processing.

Network processing will only cause an effect on the observable execution speed
if the query processor finishes its task significantly faster than the Data Roundabout
is able to provide new data. As we will show later, this effect can be observed in
our implementation of sort-merge join.

178 CHAPTER 7. THE DATA ROUNDABOUT

Setup Cost. The separation into the two processing phases (setup shown in black
and join shown in white in Figure 7.9) illustrates where the runtime improvement
comes from: distributing the generation of the hash table for the stationary re-
lation S cuts down the time spent in the setup phase relative to the number of
participating nodes. Distribution over six Data Roundabout hosts, for instance,
reduces the setup cost by a factor of about six (8.3 s for single-host execution vs.
1.4 s on six hosts).

Join Cost. The total amount of time spent in the join phase, however, is not
improved by the distribution; a behavior that might seem surprising at first. The
reason why we do not benefit during the join phase in this configuration can
be explained with the particular characteristics of a hash join. During the join
phase, the local hash joins scan their current piece of the rotating relation (Rj)
and perform a hash lookup (into their Si) for each tuple. Given a reasonably
“friendly” configuration (a proper hash function and rare hash collisions), the cost
of a hash lookup is independent of the size of the stationary relation Si.

During a full run of such a join, each participating host will scan all pieces
Rj ∈ R—hence, the entire relation R—exactly once. The total cost of the join
phase is thus independent of the number of network hosts:

cost (R on Si) ∼= |R| · cost per hash lookup. (?)

Highly skewed data invalidates the assumption of rare hash collisions. In the
next section, we illustrate how this affects the performance of the join phase.

Skewed Input

The previous experiment was based on hash-friendly, uniform key distributions.
However, real-world use cases rarely follow perfect uniformity but exhibit various
flavors of skew. We explore the effect of skewed input data on the Data Roundabout
mechanism by generating input tables according to a Zipf distribution with varying
Zipf factors z.

For various z factors we have generated input relations of size |R| = |S| =
412 MB (36 million 12-byte tuples). For each generated instance we run the
join R on S once on a single host and once on a ring that consists of six hosts.
Figure 7.10 reports the execution times that we measured for the join phase of our
partitioned hash join. We omit the setup phase in this graph since it is unaffected
by the data skew.

For Zipf factors of z = 0.6 and greater, the exponential increase of the number
of duplicates in the data sets begins to have a noticeable effect on the execution time
of our in-memory hash join. This is not a surprise: the increasing number of hash
collisions lets hash join slowly degrade towards a nested loops-style evaluation.

7.5. EXPERIMENTAL ASSESSMENT OF THE REVOLVING JOINS 179

0.1

1

10

100

1000

10000

0.0

(uniform)

0.3 0.5 0.6 0.7 0.8 0.9

Zipf Factor

J
o

in
 P

h
a

s
e

 (
lo

g
)

 [
s

]

Distributed (6-node ring)

Local (1 node)

5
1

9

2
5

6
4

Figure 7.10: Join phase on skewed data.

The distributed join (white bars) can handle the increasing skew appreciably
better. While, in line with our previous experiments, the processing of uniformly
distributed data cannot benefit from a parallel execution, Figure 7.10 shows a
five-fold advantage of the Data Roundabout join for input data with a skew of
z = 0.9.

The benefit stems from the following: the local ring buffer mechanism of Data
Roundabout balances differences in the execution speeds of the participating hosts.
Thus, a host that is stuck in a chunk of data with a high number of duplicates will
not immediately slow down the rest of the ring. A host in the Data Roundabout
will only have to wait once it has fully consumed all the data in its local ring
buffer.

Nested Loops

In addition to the index-based hash join, we now use the nested loops algorithm
on the Data Roundabout as an example of a non-indexed join (we fall back to
this join algorithm in case our index-based ones cannot answer the query). As
outlined in Algorithm 7.1, the runtime of the nested loops depends on the size of
both relations R and S. Each node has to scan the whole rotating relation (all
Rj ∈ R) for each tuple from its stationary relation Si in order to calculate R on Si

which results in the following cost:

180 CHAPTER 7. THE DATA ROUNDABOUT

0

2

4

6

1 2 3 4 5 6

Ring Size [#Nodes]

J
o

in
 P

h
a
s
e
 [

s
]

1 Core 2 Cores 3 Cores 4 Cores

4 processing cores

Figure 7.11: Join phase using the nested loops algorithm. The duration of the join
phase is proportional to the number of involved CPUs (local and remote).

cost (R on Si) ∼= |R| · |Si|.

Same as for the hash join, the factor |R| is independent of the size of the
Data Roundabout. However, the relation S is split among all nodes (and CPUs)
which results in a cost reduction proportional to the amount of utilized compute
resources.

Figure 7.11 confirms this claim for relations of size |R| = |S| = 1.4 GB where
each tuple is again 12 bytes large. We find that the join phase execution time is
indeed proportional to the number of CPU cores involved. A particular observation
is that it does not matter whether the CPU cores are local or at a remote host.
In the case highlighted in the figure, for instance, we see that the join execution
time is equal for any 4-core configuration (be it 1 node with 4 cores, 2 nodes with
2 cores each or 4 nodes with 1 core each). This observation indicates that the
Data Roundabout essentially behaves as if it was one large machine (enough main
memory and many CPUs).

We conclude from the hash (indexed) on uniform as well as skewed data and
from the nested loops (non-indexed) join, that the improvement which can be
expected from distributing the join execution on a Data Roundaboutcan result
from the setup as well as from the join phase and depends solely on the algorithm
used. In general, the Data Roundabout seems to have good scalability properties

7.5. EXPERIMENTAL ASSESSMENT OF THE REVOLVING JOINS 181

0

10

20

30

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

Data Volume

W
a
ll
-c

lo
c
k
 T

im
e

[s

]

Join

Setup

(2 Nodes)

2.7
5.6

8.4
11.1

13.9
16.2

8.3

(1 Node) (3 Nodes) (4 Nodes) (5 Nodes) (6 Nodes)

Figure 7.12: Each node adds 3.2 GB to the data set. The time spent in the join
phase scales linearly with the size of R while the setup cost remains constant.

(at least up to the extent to which we hardware for experimenting) and the network
communication is well hidden. This confirms our claim that thanks to RNICs, the
network does not have to be avoided at all cost.

7.5.2 Large In-Memory Join

After having demonstrated the advantage of the Data Roundabout over local ex-
ecution in terms of performance improvement, we now move on to problem sizes
where a local execution is no longer feasible.

The primary purpose of performing a join operation on the Data Roundabout
is to be able to evaluate large join instances that could not be evaluated on a single
host without resorting to (slow) secondary storage. We verify this capability by
scaling up the problem size, while simultaneously distributing the problem over
more hosts Hi (we keep the per-host data volume constant at 2 × 1.6 GB; filled
with uniform data). Figure 7.12 illustrates the resulting processing times for the
hash-based join on data volumes of up to 19.2 GB.

Distributing the hash phase now leads to a size-independent setup cost. This
is because we distribute the task such that the per-host data volume remains
constant. The time spent in the join phase now increases linearly with the size

182 CHAPTER 7. THE DATA ROUNDABOUT

of the input data (or, more precisely, with the size of the rotating relation R).
This confirms our assessment of the join phase cost for the hash join, as given by
Equation (?).

Scalability. The important outcome of the experiment is that thanks to the
Data Roundabout we are indeed able to process large problem sizes purely in
distributed main memory. A single machine with a large enough memory might
have achieved comparable throughput during the join phase but would have had to
pay a significantly higher price for the setup (up to n times higher on as compared
to a Data Roundabout of size n). Furthermore, while the amount of memory
addressable by a single host is severely limited10 [intb], the Data Roundabout can
be trivially scaled up to large configurations.

We conclude that the Data Roundabout makes distributed memory available in
a simple and resource-efficient way to processing queries of arbitrary size without
resorting to secondary storage.

Performance Benefit. The achieved hash-join throughput according to Fig-
ure 7.12 is 0.29 GB/s for a single machine and 0.78 GB/s for a Data Roundabout
of size six (an improvement by a factor of about 2.7). The throughput can be
increased by adding more machines which results in the setup cost being split
accordingly. When there are many machines, the setup cost becomes nearly neg-
ligible and we get close to the upper bound of the throughput which is given by
the theoretical link capacity of 1.25 GB/s. This performance (already on our six
node setup) is hard to match when resorting to secondary storage.11

7.5.3 Sort-Merge Join: Setup Cost vs. Join Cost

We are now going to analyze an alternative index-based join algorithm: the sort-
merge join.

The join phase characteristics of sort-merge join resemble those of the parti-
tioned hash join as shown before. Sorting, however, incurs a significantly higher
cost than the generation of the partitioned hash tables, which is why we see much
higher setup costs in Figure 7.9 (partitioned hash) than in Figure 7.13 (sort-merge).
As can be observed in Figure 7.13, this leads to significantly longer overall exe-
cution times for small Data Roundabout configurations. However, the cost is also
decreasing linearly with an increasing number of nodes.

Figure 7.14 reveals that the higher setup cost slightly pays off during the join
phase (white bars). Merging two sorted tables yields a cache-friendly, strictly se-
quential data access pattern. In the case of our largest join configuration (19.2 GB

10Even the modern Intel i7/Nehalem CPUs are limited to 64 GB of physical memory.
11A recent Serial ATA 3 drive has a theoretical maximum sequential read bandwidth of

0.6 GB/s.

7.5. EXPERIMENTAL ASSESSMENT OF THE REVOLVING JOINS 183

distributed over 6 hosts), this cut down the time spent in the join phase from
16.2 s (partitioned hash) to 6.4 s (sort-merge), a more than two-fold advantage.12

As pointed out earlier, the setup cost is a one-time investment from which—in
contrast to a single-host execution—the in-memory join steps can benefit several
times. How often a join execution takes advantage of the higher investment in the
setup phase depends on the size of the Data Roundabout ring. High setup costs
are better amortized if the join is executed on larger rings.

Thus, the use of the Data Roundabout based join may suggest a different bal-
ance between the effort spent in the setup phase and its resulting performance in
the join phase. For the two particular implementations of the partitioned hash join
and the sort-merge join, we expect the latter to overpass the former in Data Round-
about configurations from ≈ 30 nodes upwards (i.e., for data volumes & 100 GB)
which means that it makes sense to invest (once) in a higher setup cost in order
to reduce the join cost (occurred several times) when the data and number of
networked hosts are large enough.

Kim et al. [KSC09] have recently studied the trade-off between hash and sort-
merge joins with highly tuned implementations of both algorithms and found sim-
ilar performance already on a single host. Sort-merge join is then likely to be the
better choice already for Data Roundabout configurations of small sizes.

“Synchronization” Cost

In contrast to our observations on the partitioned hash join (Section 7.5.1), Fig-
ure 7.14 shows that the join phase of the sort-merge join is too fast to fully hide the
cost of network communication. The time shown in gray is the time that the join
threads now spend waiting for new data to arrive through the Data Roundabout
transport layer (we say they synchronize with the Data Roundabout layer).

The performance that we observe indicates that we are hitting the limits of
the physical 10 Gbps transport layer. For a full join evaluation, the entire rela-
tion R has to be pumped once through each participating host. For the 6-host
configuration in Figure 7.14, this means that |R| = 9.6 GB of data crossed each
Data Roundabout link in 6.4 s + 2.3 s = 8.7 s, corresponding to a throughput
of 1.1 GB/s, which is close to the theoretical maximum of the underlying 10 Gb
Ethernet transport.

In contrast to the partitioned hash join, we are able to saturate the link already
with a roundabout of size six when using an algorithm with a join phase which is
as efficient as the one of the sort-merge join.

In order to improve performance using this join algorithm, we would have to
equip each node with another RNIC to double the available network bandwidth.

12Even with the new “sync” time considered (2.3 s), the advantage is still a factor of 1.8.

184 CHAPTER 7. THE DATA ROUNDABOUT

0

25

50

75

100

1 2 3 4 5 6

Ring Size [#Nodes]

W
a
ll
-c

lo
c
k
 T

im
e

[s

]

Join

Setup

single host performance

78.0

40.6

26.5
19.4 15.2 12.6

1.0

Figure 7.13: Sort-Merge Join: Joining a fixed data set on an increasing number of
nodes.

70

75

80

85

90

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

Data Volume

W
a
ll
-c

lo
c
k
 T

im
e

[s

]

Join

Sync

Setup

78.0

6.4
5.4

4.3
3.2

2.2
1.0

0.7 1.1 1.5 1.9 2.3

(2 Nodes)(1 Node) (3 Nodes) (4 Nodes) (5 Nodes) (6 Nodes)

Figure 7.14: Sort-Merge Join: Each node adds 3.2 GB to the data set.

7.6. IS RDMA BENEFICIAL AT ALL? 185

0

20

40

60

1 2 3 4

Number of Threads

W
a
ll
-c

lo
c
k
 T

im
e

[s

]

TCP Join

TCP Sync

RDMA Join

15.7

44.2

23.1

12.2

56.4

33.6

28.2 27.1

Figure 7.15: Partitioned hash join on a Data Roundabout of size six with a total
table data of 13.4 GB. RDMA versus TCP with a varying number of join threads.

7.6 Is RDMA Beneficial At All?

We have presented the join/Data Roundabout pair running on top of a hardware-
accelerated RDMA transport layer. For assessing the added value of RDMA, we
now replace the iWARP/RDMA layer with ordinary TCP/IP and rerun the join
experiment.

To this end, we generate data instances of sizes |R| = |S| = 600 million tuples
with 12 bytes per tuple (corresponding to a total data volume of 2× 6.7 GB) and
distribute the evaluation of R on S over a Data Roundabout of size six (as before).
We run the join first with RDMA support and then with the standard socket
mechanism provided by the Linux kernel. That is, we change the transmitter and
receiver of the Data Roundabout transport to use send and recv calls instead
of their RDMA counterparts. Since this obviously causes additional load on the
available CPU cores, we have configured the join algorithm to allocate a varying
number of cores for join processing, in order to have the remaining cores available
for network communication. When using only two join threads, for instance, two
CPU cores should always remain available for the two communication entities.

Figure 7.15 shows the execution times for the join phase of our partitioned hash
join (the setup phase is independent of the transport mechanism and we therefore
omit it in the comparison). The RDMA-based Data Roundabout outperforms
the TCP-based one in all configurations. We also observe that even though the
transport is multi-threaded, the TCP approach (in contrast to RDMA) is not able
to fully hide the synchronization time. Surprisingly, RDMA is also better in the
case where only 1 core is computing the join and three cores are available for the

186 CHAPTER 7. THE DATA ROUNDABOUT

Throughput RDMA Throughput TCP Improvement Factor

1 Thread 0.30 GB/s 0.24 GB/s 1.3
2 Threads 0.58 GB/s 0.39 GB/s 1.5
3 Threads 0.85 GB/s 0.47 GB/s 1.8
4 Threads 1.10 GB/s 0.49 GB/s 2.2

Table 7.2: Throughput achieved using several degrees of local parallelism. The
higher the parallelism, the greater is the benefit of using RDMA.

data propagation. This is due to the fact that RDMA not only saves CPU cycles
by avoiding the intermediate data copies but also reduces the context switch rate
due to the queue-based communication style. Hence, the two RDMA transport
entities are only interrupted upon completion of the whole transfer and not every
time some piece of data is ready for delivery. This results in little disturbance of
data processing operations and thus in a low cache pollution.

With TCP sockets, on the other hand, the receiver must bring (copy) the data
from the socket buffer into the application memory on its own. So the receiver
is frequently interrupted. This indirect data placement costs CPU cycles and
causes many more context switches. Furthermore, the incoming data might not
completely fit into the socket buffer, causing the transport to stall until the receiver
has copied the data from the socket buffer into the application memory. While we
could utilize this behavior in the previous chapter to pause the video stream, it is
counterproductive in our current scenario.

Yet, the largest performance benefit between RDMA and TCP results when
using all four cores for the join processing (cf. Table 7.2). Join threads and
communication threads now all compete for the available CPU cycles, pollute each
others caches, and cause a large number of context switches. The benefits of the
cache-efficient join algorithms are mostly annihilated.

Another important aspect of iWARP/RDMA with respect to the four-thread
configuration is the reduced traffic on the memory bus. As we pointed out in
Chapter 2, the data crosses the memory bus only once between the network and
the host memory when using the direct data placement provided by RDMA. TCP
on the other hand requires three to four crossings in either direction. In terms of
the hash join, we face roughly the following load on the bus for each rotation step:

read the stationary chunk Si

read the rotating chunk Rj

send Rj to the next host
receive Rj+1 from prev. host

As |Rj| = |Si| = 1.1 GB and since we are running on a Data Roundabout of

7.6. IS RDMA BENEFICIAL AT ALL? 187

CPU Load RDMA CPU Load TCP

1 Thread 25 % 31 %
2 Threads 50 % 59 %
3 Threads 76 % 84 %
4 Threads 100 % 86 %

Table 7.3: CPU load during the join phase of the hash join. 100 % refers to all
four cores being completely busy. TCP is not able to keep all CPUs busy.

size six, this means for RDMA that a total of about

6 · (4 · 1.1 GB) = 26.4 GB

cross the memory bus in 12.2 s resulting in a load of 2.2 GB/s. In the case of
TCP/IP, the steps for sending and receiving induce each about 4 · 1.1 GB yielding
a total of

6 · (2 · 1.1 GB + 2 · 4.4 GB) = 66 GB

in 27.1 s which is equivalent to a memory bus traffic of 2.4 GB/s. We have
measured a memory bus bandwidth of 3.5 GB/s in our systems which means that
the TCP-based join execution could not reach the 12.2 s from the RDMA-based
one even if the CPUs were fast enough (the memory bus would have to sustain
5.4 GB/s).

Adding more CPUs is hence not an alternative to RDMA: in the case where all
cores are processing the join (using TCP), the total CPU utilization reaches only
about 86 % (Table 7.3) which indicates that adding further CPUs would not yield
an improvement. RDMA, on the other hand, incurs a CPU load which matches
the number of cores that are computing the join indicating that it is able to fully
utilize the available compute resources.

While the higher memory bus load certainly contributes to the slow-down of
the TCP/IP based partitioned hash join on the Data Roundabout, it can become
the limiting factor for join algorithms (such as the sort-merge join) where more
time is invested in the setup phase to speed up the join phase. We have found
this confirmed: while RDMA yields a join-throughput improvement by a factor
of 2.2 for the partitioned hash join, we have found an increased factor of 3.2 for
sort-merge where the performance benefit of the join phase can only be leveraged
if the memory bus is not congested.

7.6.1 Data Roundabout Characteristics Summary

The Data Roundabout essentially provides the necessary infrastructure to leverage
existing in-memory query evaluation techniques to the processing of large data

188 CHAPTER 7. THE DATA ROUNDABOUT

sets in a distributed environment.

Leveraging Main-Memory Resources. The main effect of the Data Round-
about is the efficient use of available main memory resources in a multi-host setup.
In many cases, this is going to make the join processing viable at all, when no
single host would be available to perform the full join locally.

Applicability. A virtue of the Data Roundabout is that it does not depend
on any particular pattern that supported query types would have to satisfy. As
such, due to its scalability properties, the Data Roundabout can also be applied to
tackle problems that are not amenable to any of the existing (often hash-based)
optimization strategies simply by throwing a lot of hardware at them.

In-Memory Query Processing. Likewise, the Data Roundabout is oblivious
of the algorithm that is used to implement the in-memory query evaluation. As
a consequence, the use of the Data Roundabout will not always yield the same
benefit. The resulting CPU load, for instance, will benefit those in-memory query
implementations best that would show poor scaling otherwise (e.g., nested loops
joins).

7.6.2 Going Really Large - An Outlook.

Taking all of the above into consideration, we argue that iWARP/RDMA is not
only beneficial for the Data Roundabout but it is key to its success. If we plan
to deal with really large tables (i.e., Terrabytes), we need many nodes to hold
the data. According to our findings from above, this means that the setup cost
becomes small compared to the join cost. Hence, we should utilize a join algorithm
like the sort-merge join which has a cache-efficient, streamlined join phase and
invest somewhat more into the index setup. As we have seen, the network will
eventually become the bottleneck. We can add more RNICs to the machines and
run at multiples of 10 Gbps. The next bottleneck is then either the memory bus
or the CPUs. However, if we did not utilize RNICs, we would be bound by the
memory bus already with a single NIC and would never be able to achieve the
throughput of the RDMA-based Data Roundabout. In addition to that, we can
not at all profit from future, even faster networks.

7.7 Related Work

We kept the design of the distributed join processing and the Data Roundabout
transport layer deliberately simple. As such we feel that many of the ideas pre-
sented in this work would blend well with existing research and with some of the
recent developments in hardware technology. The availability of a fast transport

7.7. RELATED WORK 189

Host H1

Host H2

Host H3

Host H4

Host H5

Host H6

HC

Map/

Reduce

Data Roundabout

Figure 7.16: MapReduce architecture enhanced with Data Roundabout based join
processing.

mechanism eliminates much of the urgency to reduce network transfer volumes as
was the primary goal of earlier work [BC81,ML86,VG84].

Our spinning join setup resembles the DataCycle [BGH+92] or the Broadcast
Disks [AAFZ95] systems that put significant effort into properly scheduling data on
the transport stream. Integrating the ideas of that work into the Data Roundabout
system is part of the ongoing Data Cyclotron effort [GK10] and has already inspired
a number of design decisions in the evolving system prototype.

More recent work includes new systems designed for cloud environments. While
systems built on MapReduce-style architectures (such as the recently proposed
HadoopDB [ABPA+09]) can achieve excellent scale-out for certain types of queries,
they still lack a convincing means to perform arbitrary joins across the pre-
assigned data partitions. The Data Roundabout approach could fill this gap (see
Figure 7.16) and enable the vision of a distributed true-SQL system.

On the technology side, joins on the Data Roundabout could be an interesting
application for Intel’s emerging I/O Acceleration Technology (I/OAT) [ioa]. With
help of the Direct Cache Access (DCA) feature of I/OAT, network controllers can
place data directly into CPU caches. As we have shown in Section 7.3.1, the
Data Roundabout works well already with RDMA transfer units of around one
megabyte, small enough to be loaded straight into caches. This might not only
help to cut down transport latencies, but also yield an even further reduction of
main memory bus contention.

Finally, we would like to relate our work to the systolic systems developed in

190 CHAPTER 7. THE DATA ROUNDABOUT

the 1980s. Systolic systems are composed of a network of processors with a simple
rhythmical (hence the term “systolic”) data flow in-between. Although Kung and
Leiserson [KL78] had small-scale, on-chip processing units in mind when they
presented the first “systolic algorithms,” some of the observations made at the
time may still be applicable to a Data Roundabout ring.

7.8 Summary

In this chapter, we have presented an example of how the bandwidth offered by
modern networks with iWARP/RDMA capabilities can be exploited for distributed
database processing. For that, we have proposed the Data Roundabout architecture
which organizes processing nodes in a ring shaped network. We have further
illustrated the peculiarities of the Data Roundabout by running distributed join
queries on large data sets on top of it. The Data Roundabout has promising
characteristics also in other settings [GK10,Ker08].

With the Data Roundabout based join, large database joins can be processed as
in-memory joins by taking advantage of the distributed main memory in a cluster
system. The system becomes CPU-limited instead of bound by disk or network
I/O. Other than in a centralized system, the capacity of a Data Roundabout storage
ring can be scaled up trivially, making it possible to process input data of arbitrary
size. In line with the idea of cloud computing, such scaling may even be performed
at runtime, based on application workload demand.

The effect of distributing CPU load depends on the particular query problem
and on the algorithm chosen to perform intra-host evaluation. We have shown
that critical and CPU-intensive sub-tasks, such as hash generation or joins over
skewed data, can benefit best from the Data Roundabout mechanism.

Last but not least, we have shown and argued that it is key to have an RNIC
which offers hardware-accelerated direct data placement in order to fully leverage
the available high-performance communication infrastructure.

8
Conclusion

Following “Moore’s Law”, computing power per machine doubles every two years
on average. However, network technology performance has recently grown at a
much faster pace. Because of this trend and the unavoidable overhead in common
TCP/IP stack implementations, an increasing share of a host’s processing power is
dedicated to pure network I/O and therefore unavailable to application processing.
In the course of this thesis, we have investigated the suitability of Remote Direct
Memory Access (RDMA) to address this problem. RDMA is a mechanism whereby
data can moved efficiently between the application memory of the local and remote
computer. In bypassing the operating system, RDMA significantly reduces the
CPU cost of large data transfers and eliminates intermediate copying across buffers,
thereby making it attractive for implementing distributed applications.

In the first part of this work, we have provided an overview of the research
which eventually led to what we refer to as RDMA today. We have then presented
a number of projects which aimed at leveraging RDMA in different application
domains. The discrepancies among the final benefits of applying RDMA were a
key motivator for the investigations presented in this thesis. They led us to address
the following question, “Under what circumstances is RDMA able to provide a
substantial benefit and what do we gain with it?”. In order to answer these
questions, we have first carried out extensive experimental investigations of the
RDMA subsystem and its interfaces. Thereafter, we have built a selection of
real world applications on RDMA in order to verify our findings and gain further
insight.

191

192 CHAPTER 8. CONCLUSION

iWARP: RDMA over Ethernet

Today, the RDMA data transfer model is available on top of two popular fabrics:
the proprietary InfiniBand as well as standard Ethernet. In 2007, the IETF has de-
fined a set of companion protocols, termed iWARP, to enable RDMA communica-
tion over Ethernet. Even though Ethernet cannot quite offer the same performance
as InfiniBand, its standards-based interface, support for legacy infrastructure and
lower cost provide a significant benefit. We have therefore decided to focus our
research on the use of iWARP. However, many findings are valid for RDMA in
general and therefore also for InfiniBand.

With iWARP, RDMA is no longer limited to HPC environments. As it runs on
the ubiquitous Ethernet, which already today offers a throughput of 10 Gigabit/s
as well as a fairly low latency, iWARP is a good candidate for simplifying data
center infrastructures through fabric consolidation—Ethernet could thus be used
for LAN/NAS, SAN as well as HPC. iWARP is also becoming interesting for in-
creasing the performance of legacy applications which are currently communicating
through TCP sockets.

iWARP/RDMA Benefits

RDMA reduces the I/O overhead within communicating hosts by avoiding inter-
mediate copying of the data (zero-copy) and by removing the OS from the critical
data path (kernel bypassing)—both of these concepts are fundamentally differ-
ent from the approaches taken by the TCP socket abstraction. The immediate
advantages are:

1. significant savings in CPU cycles (on both sides)

2. reduced memory bus load (factor 2–4)

3. lower context switch rate

4. lower power consumption for data intensive communication

Apart from these immediate performance benefits, RDMA has a few more
appealing features:

� one-sided RDMA operations (RDMA Write and RDMA Read) in addition
to the two-sided Send/Receive communication

� an asynchronous interface between the application and the network adapter

� scatter/gather buffers

193

With one-sided operations, only the application of the host initiating the data
exchange is involved in the data transfer. At the remote machine, the RNIC han-
dles the requests in hardware. The advantage of this communication style is that
it allows for truly client-driven applications, whereby most of the processing tasks
are taken away from the (single) server and distributed among the (large number
of) clients. While the one-sided operations do not provide a better performance
than Send/Receive, they allow for a significant improvement in terms of scalability
for 1-to-n communication scenarios. This is not feasible to the same extent with
TCP as we have seen in our high-definition media dissemination system.

The asynchronous interface between the application and the RNIC enables
overlapping of communication with computation which is vital for hiding the com-
munication delay of the network and for making efficient use of the compute re-
sources. In the Data Roundabout project, for instance, we were able to minimize
the overall query response time by hiding the network delay behind the query
execution. Being able to leverage this feature provides a clear advantage over
TCP—RDMA might be of limited use for applications that cannot profit from it.

Scatter/gather buffers, finally, provide an effective means for separating the
payload from meta data such as control- or head information. However, this feature
is not available for the destination of RDMA Writes as well as for the source of
RDMA Reads—those are limited to single, continuous buffers.

Drawbacks of iWARP/RDMA

Besides the numerous advantages of RDMA, we have identified several problems
and difficulties which must be taken into account when assessing the overall benefit
of the technology for a certain application. These are in short:

1. the RDMA API is radically different from the socket interface (necessitates
fundamental changes of the application code)

2. every communication buffer must be registered with the RNIC (costly)

3. registered memory is blocked for other applications

4. for each inbound Send, there must be a Receive Work Request pending
(necessitates synchronization between peers)

5. buffer of Receive Work Request must be of appropriate size for data from
inbound Send message (not always possible in advance)

6. one-sided operations need prior buffer advertisement (requires another round
trip)

194 CHAPTER 8. CONCLUSION

7. no implicit notification of remote peer when one-sided operation has finished
(yet another round trip for explicit notification message)

8. expensive RNIC hardware is needed in most cases

First of all, the interface to the RDMA subsystem is radically different from
sockets. Unfortunately, it is not just different but also much more complex and
error-prone because a lot of the responsibility, which was hidden by the socket
interface, has been moved to the application developer with RDMA.

The most critical of these responsibilities is the communication buffer manage-
ment which has to be performed explicitly at the application level. All RDMA op-
erations (including Send/Receive) are executed on preregistered buffers only which
means that every memory segment which is to be used as source or destination
buffer of an RDMA data transfer has to be registered with the RNIC in advance.
As we have shown, this registration process is quite costly because it follows the
slow control path through the operating system and triggers updates of various
kernel data structures. Furthermore, address translations from (user) virtual to
physical bus addresses are necessary. What is more, the size of such a registered
buffer (Memory Region, MR) cannot be changed anymore—a deregistration fol-
lowed by a fresh registration is necessary. This has a number of drawbacks in
practice. On one hand, it is often difficult or even impossible to determine the
appropriate buffer sizes in advance. On-demand buffer registration, on the other
hand, has a negative impact on the performance at runtime. This cost is often
overlooked. To make things worse, the registration not only costs time but also
blocks the underlying memory for other applications—over-provisioning is thus
only possible up to a certain extent.

The fixed size of Memory Regions is particularly critical for Receive operations
because they are consumed from the RNIC Receive Queue in FIFO order and not
according to matching destination buffer sizes. The RDMA specification dictates
that exactly one Receive Work Request must be consumed for each inbound Send
message. In practice, this means that the destination buffer targeted by the next
Receive Work Request must provide enough space for placing the entire payload
of the next inbound Send message.

A related issue is the fact that there must be at least one Receive Work Request
on the Receive Queue whenever an inbound Send message arrives. An empty Re-
ceive Queue results in an error and immediate termination of the connection. The
need for always having the appropriate Receive Work Requests ready for match-
ing inbound Send messages necessitates a sophisticated synchronization between
communicating peers—while the performance penalty of this synchronization is
often low, it complicates the communication protocol.

There are also some issues with regard to the one-sided operations. First of
all, the buffer information must be exchanged by means of a buffer advertisement

195

before a remote DMA operation (i.e., RDMA Read or RDMA Write) can be exe-
cuted. The necessary information consists of three parts: the address, length and
STag of the remote buffer. Because the STag is generated by the RDMA sub-
system, a re-advertisement is necessary whenever the buffer is reregistered (e.g.,
after resizing). Depending on the communication protocol and network topol-
ogy, such a re-advertisement might necessitate additional round trips or it might
even be impractical (e.g., in the Data Roundabout where the data flow is strictly
unidirectional).

A second issue of the one-sided operations is the fact that there is no way of
implicitly notifying the remote host about the completion of a data transfer—one-
sided operations only generate a Work Completion locally. For instance, a host
providing some data to others for reading has no way of knowing when the others
have finished the data transfers. A subsequent Send/Receive synchronization mes-
sage exchange is thus necessary, inducing another round trip delay and increasing
protocol complexity.

Last but not least, the full potential of iWARP/RDMA can only be realized
when RDMA-enabled NICs are in place—they are still much more expensive than
ordinary Ethernet NICs, however.

Application of RDMA in Practice

When we have started to write benchmarks and applications involving RDMA com-
munication, we have realized that there are environments in which RDMA does
not provide the expected performance advantage over TCP. If the aforementioned
issues are not addressed carefully, RDMA loses all its performance advantages. We
have therefore identified a number of optimizations which make a substantial dif-
ference in the overall performance of RDMA based applications. The optimizations
fall into the following four categories: application enablement, buffer management,
data transfers and connection management.

Enhancing Application Enablement. iWARP/RDMA communication re-
quires both end points to be equipped with RDMA-capable network adapters
(RNICs) which are still quite expensive. To enable iWARP communication over
ordinary low-cost Ethernet adapters, we have proposed a software-only RDMA so-
lution, termed Softiwarp. Softiwarp allows for mixed setups consisting of hardware-
and software enabled RDMA because it is wire-compatible with the RNICs. Al-
though we do not achieve the same performance and overhead reduction as a
true RNIC, Softiwarp makes RDMA attractive for a whole range of applications
for which RDMA would otherwise not be an option. An example of this is our
high-definition media dissemination system where a significant number of low cost
clients, running Softiwarp, allow the single server to leverage its RNIC(s).

Second, the iWARP/RDMA API on which the industry has agreed is rather

196 CHAPTER 8. CONCLUSION

cumbersome and error prone to program against. As another enhancement, we
have therefore proposed a user library that eases iWARP/RDMA application de-
velopment significantly—particularly for programmers which are not (yet) familiar
with all the details of the RDMA specification. We have shown that our library
induces essentially no overhead compared to the original interface. Yet, all the
functionality provided by the original API is preserved while the application de-
velopment has become much easier as our interface is more intuitive and hides
many tedious details. In particular, we simplify the connection- and buffer man-
agement as well as the initiation of RDMA data transfer operations.

Buffer Management Optimizations. RNICs can only execute their data trans-
fer operations on application buffers which are registered as Memory Regions
(MRs). The cost of the registration process increases linearly with the number
of pages involved. Hence, for an application to profit the most from RDMA, it has
to be able to reuse its buffers during operation. Yet, such reuse is only possible if
the application can be designed to output all its data directly to that fixed user
virtual memory address interval where the MR is situated. Furthermore the data
set must always be of the same size or else either memory is wasted or the transfer
fails because the MR is not large enough. If this is not possible, the application
must either copy the data locally into an existing MR or register the data as a
new MR on the fly.

We have found that only a combined approach is able to keep the overhead
low: while it is faster to copy small data sets (smaller than the critical size), it is
significantly more efficient to reregister larger buffers. The reasons for reregistering
large buffers rather than copying the data are the following:

� shorter delay (up to an order of magnitude)

� fewer CPU cycles necessary (RNIC performs some of the tasks)

� almost zero load on the memory bus (the data itself is not touched)

� low data cache pollution

� MRs can be deregistered after use (memory is not blocked)

By experiment, we have shown that a straight-forward MR management can
degrade the overall application performance dramatically. For an effective buffer
management strategy, it is vital to respect the critical buffer size where reregistra-
tion outperforms copying—the resulting latency reduction can be of up to several
orders of magnitude. Other factors like the buffer re-advertisement and the com-
munication protocol have to be considered as well when designing the strategy.

Whenever possible, buffers should be registered after their underlying pages
have been installed in order to benefit from parallel registration on SMP systems.

197

0

2

4

6

8

10

1B 1KB 1MB 1GB

Message Size

T
h

ro
u

g
h

p
u

t
[G

b
it

/s
]

0

25

50

75

100

C
P

U
 L

o
a

d
 [

%
]

CPU Load at Issuer

Throughput

Sweet Spot of iWARP/RDMA

Figure 8.1: iWARP/RDMA is most effective in shipping large data chunks. A
high throughput is achieved at negligible CPU load.

Also, the registration delay can be hidden by overlapping it with communication
(e.g., while waiting for a response from the peer).

Data Transfer Considerations. Not only the buffer management but also the
communication strategy must be chosen carefully. The first thing we have observed
is that the one-sided operations offer the same performance as the two-sided ones—
they can thus be chosen with focus on the appropriate semantics. Yet, one-sided
operations induce neither CPU load nor context switches on the remote machine.

The sweet spot of RDMA communication is the transfer of massive data in large
chunks as Figure 8.1 shows: the maximum throughput is reached with negligible
CPU load. For small messages, on the other hand, the benefit is marginal because
RNICs are designed to reduce the per-byte rather than the per-packet cost. For
small messages, a separate TCP channel can be used but care has to be taken with
regard to race conditions because the message ordering guarantee is lost.

In order to reduce the overall latency and minimize the application involve-
ment, data should be shipped using unsignaled Work Requests whenever possible.
Furthermore, the communication protocol should be designed with as few synchro-
nization points as possible.

Connection Management. When considering the application of iWARP/RDMA,
the duration of individual connections has to be taken into account. We have
shown that the setup of an iWARP connection is an order of magnitude slower
than the establishment of a TCP channel. As a result, iWARP has a signifi-
cantly larger time-to-first-byte than TCP which makes it highly unsuitable for

198 CHAPTER 8. CONCLUSION

applications facing short-lived connections (e.g., a webserver). In some cases, a
connection manager can be deployed to keep the iWARP connections open. We
have demonstrated this with the distributed compiler extension.

Real World Application Examples

In part II of this thesis, we have applied our findings and optimizations to the
following three real world applications: a distributed compiler, a high-definition
media dissemination server and the Data Roundabout.

First, we have shown the various aspects that need to be considered when
enabling a legacy TCP-based application for iWARP/RDMA at the example of
rdistcc, the distributed C/C++ compiler extension. In particular, we have demon-
strated that, in most cases, there is no straight forward mapping from sockets to
the verbs interface due to the explicit buffer management. The attempt to hide
the RDMA API behind a socket abstraction annihilates some of the performance
as was shown in the case of SDP because a socket application is not aware of the
buffer registration constraints. Also, we have introduced the RDMA connection
manager for reducing the connection establishment overhead. Last, we have pre-
sented an elegant and generally applicable way for making files accessible through
RDMA. In terms of performance, we have seen that the use of Softiwarp can
improve application performance when dedicating a core to network processing.
However, this is only feasible as long as the memory bus is not congested.

Subsequently, we have focused on the applicability of RNICs for shipping large
amounts of data. To that end, we have built an iWARP-based media server offering
high-definition content on demand to a substantial number of clients. We could
show a significantly improved scalability when using iWARP rather than TCP or
UDP even when using the sendfile mechanism and a TCP-offload engine. The
reasons for the improvement are the following:

� no control channel is needed: the one-sided RDMA Read operation allows
for effective in-band VCR-like media control at minimum server load

� the server is stateless (apart from the connection management)

� copy avoidance not only on the sender but also on the receiver

� a single thread is sufficient to handle all clients; the connection multiplexing
is performed at hardware level

� frequency of client interaction does not affect the server

The media server is a good example for demonstrating the advantages of one-
sided operations because the protocol involves no synchronization points and only

199

a small number of buffer (re)advertisements (usually just one). The clients can
autonomously read any amount of data from any position within the advertised
buffer. Finally, we have also shown how the dissemination scheme can be easily
transformed from video-on-demand to live streaming.

Last but no least, we have applied the iWARP technology to the database
domain by building the Data Roundabout. Thanks to iWARP, we could leverage
the high-speed network and with that exploit the available distributed compute
resources. In essence, we traded an increased network load for a simple yet flexi-
ble communication scheme causing virtually no management overhead. The gain
thanks to RDMA is many fold:

� leverage the available network bandwidth rather than trying to minimize the
amount of data to be transferred

� save CPU cycles due to the reduced data management overhead which en-
ables good scalability as well as effective utilization of the main memory and
CPUs available across the network

� hide network latency by overlapping communication with computation

� scatter/gather buffers for separation of payload from control information;
payload is not polluted with meta data which simplifies data processing

� exploit available bandwidth for sending access structures (e.g., hash tables)
along with the data; amortize work invested in building the structures

� significant savings on the memory bus leading to more bandwidth being
available for query execution

� the network is faster than disks; we can bring more data to the CPUs

The use of RNICs results in a significant reduction of the interrupt rate and thus
in a lower cache pollution. Furthermore, the involvement of the CPUs in network
I/O as well as the memory bus load are very low on the sending as well as on
the receiving endpoints. These facts allow for heavy computation (as needed for
query execution) in parallel with data exchanges. This is neither possible with
TCP nor with Softiwarp. Hence, we find that assigning many CPUs to network
I/O is not a replacement for hardware-accelerated iWARP/RDMA—the reduction
of the memory bus load thanks to the zero-copy mechanism offered by the RNICs
is essential.

200 CHAPTER 8. CONCLUSION

Alternatives to iWARP/RDMA

As we have documented, RDMA has a lot of advantages but also some drawbacks
and limitations. The most severe issues are the need for explicit buffer manage-
ment and the new interface which necessitate profound application changes. While
kernel TCP is not an alternative to RDMA for excessive data transfers due to the
high resulting CPU load, the memory bus traffic and the high interrupt rate, its
performance can be improved by adding a TCP-offload engine (TOE). The ad-
vantages are that part of the work is offloaded to dedicated hardware while the
application interface is preserved. However, the intermediate copying cannot be
avoided which means that the memory bus traffic is still high. In most cases, the
performance improvement over kernel TCP is not significant enough to justify the
additional hardware.

As a second alternative, there is the sendfile mechanism provided by most
recent Linux kernels. The advantages are that some of the intermediate copying
is avoided on the transmit side and that no special hardware is required. Yet,
the receive side still incurs the copy overhead. This is particularly problematic
because the receive side faces the higher load due to the irregular nature of data
arrival. Furthermore, the sendfile mechanism is limited to files.

We have seen at the example of the high-definition media server that a TOE
in combination with sendfile can offer a significant improvement over plain TCP
which might be sufficient in some situations. The added value of RDMA is thus
not always large enough to compensate for the additional cost and development
effort.

Summary

We conclude that an application profiting from full RDMA performance has the
following characteristics: It lives in an environment where there is little or no churn
(negligible connection setup costs), it can reuse its buffers (MRs) extensively and
transfers a lot of data. Furthermore, it is able to overlap communication with
computation (asynchronous interface) and can make use of one-sided operations
(remote computer does not need to be notified; few synchronization points in the
protocol). On the other hand, an application that faces a lot of churn, operates on
unpredictable, highly varying buffer sizes and depends on a short time-to-first-byte
might perform better by using plain TCP.

Hence, not every application can profit from RDMA but those that can profit,
profit significantly. Table 8.1 summarizes our findings and strategies presented in
this thesis which are key for realizing the potential of RDMA on the application
level.

201

Finding Consequence
iWARP has a large setup delay. RDMA is not suitable for applications which face

a lot of churn. Keep RDMA connections open
whenever possible.

There is a minimum total
amount of data necessary for
RDMA to pay off.

The application should transfer a large amount of
data (at least 1 GB).

RDMA requires a minimum
transfer unit size.

The data should be transferred in few large
chunks rather than in many small ones to lever-
age the link capacity and keep the processing cost
low.

MR (de-)registartion is costly. Reuse buffers whenever possible. Overlap regis-
tration with protocol synchronization- or other
idle time.

MR reuse is not always possible. Copy small MRs and reregister large ones accord-
ing to the critical buffer size.

Copying data causes CPU load
and memory bus traffic.

Only copy small buffers for which reregistration
would be more expensive.

MR reregistration necessitates
buffer readvertisement.

Take cost (and feasibility) of readvertisement into
account when designing the buffer management
strategy and communication protocol.

MR registration causes page
faults.

Register buffers whose pages are already resident:
it is faster and we can leverage multicore systems.

Registered buffers block memory
for other applications.

Reregister large buffers on demand and deregister
them as early as possible.

Packet ordering guarantee is lost
when using a separate TCP
channel for control messages.

Use RDMA also for small control traffic to avoid
race conditions.

RDMA provides an asyn-
chronous interface.

Overlap communication with computation to
hide network latency.

RDMA Read and RDMA Write
operations are one-sided. The
remote application does not get
notified about the data transfer
completions.

These operations are of limited use for protocols
with many synchronization points.

One-sided operations do not offer
a better performance than two-
sided ones.

Select the operation type which fits best seman-
tically.

Table 8.1: RDMA limitations and consequences for the application developer.

202 CHAPTER 8. CONCLUSION

Bibliography

[AAFZ95] Swarup Acharya, Rafael Alonso, Michael Franklin, and Stanley
Zdonik. Broadcast Disks: Data management for asymmetric com-
munication environments. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages 199–210, 1995.

[ABC+98] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. John-
son, David Kranz, John Kubiatowicz, Beng Hong Lim, Kenneth M.
Mackenzie, and Donald Yeung. The mit alewife machine: Architec-
ture and performance. In Proceedings of the International Symposium
on Computer Architecture, pages 509–520, 1998.

[ABGS97] Ed Anderson, Jeff Brooks, Charles Grassl, and Steve Scott. Perfor-
mance of the CRAY T3E multiprocessor. In Proceedings of the 1997
ACM/IEEE Conference on Supercomputing, pages 1–17, 1997.

[ABPA+09] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Alexander
Rasin, and Avi Silberschatz. HadoopDB: An architectural hybrid of
MapReduce and DBMS technologies for analytical workloads. Pro-
ceedings of the VLDB Endowment, pages 922–933, 2009.

[apa] Apache HTTP Server. http://projects.apache.org/projects/

http_server.html.

[BB03] Christian Bell and Dan Bonachea. A new DMA registration strat-
egy for pinning-based high performance networks. In Proceedings of
the 17th International Parallel and Distributed Processing Symposium,
page 198, 2003.

[BBC+03] Christian Bell, Dan Bonachea, Yannick Cote, Jason Duell, Paul Har-
grove, Parry Husbands, Costin Iancu, Michael Welcome, and Kather-
ine Yelick. An evaluation of current high-performance networks. In
Proceedings of the 17th International Parallel and Distributed Process-
ing Symposium, page 10, 2003.

203

http://projects.apache.org/projects/http_server.html
http://projects.apache.org/projects/http_server.html

204 BIBLIOGRAPHY

[BBJP06] Pavan Balaji, S. Bhagvat, Hyun-Wook Jin, and Dhabaleswar K.
Panda. Asynchronous zero-copy communication for synchronous sock-
ets in the sockets direct protocol (sdp) over infiniband. In Proceedings
20th IEEE International Parallel and Distributed Processing Sympo-
sium, page 303, 2006.

[BC81] Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins to solve
relational queries. Journal of the ACM, 28:25–40, 1981.

[BC02] Philip Buonadonna and David Culler. Queue pair IP: A hybrid archi-
tecture for system area networks. ACM SIGARCH Computer Archi-
tecture News, 30:247–256, 2002.

[BcFB+07] Pavan Balaji, Wu chun Feng, Sitha Bhagvat, Dhabaleswar K. Panda,
Rajeev Thakur, and William Gropp. Analyzing the impact of sup-
porting out-of-order communication on in-order performance with
iWARP. In Proceedings of the ACM/IEEE Conference on High Per-
formance Networking and Computing, page 35, 2007.

[BCS06] Mark Baker, Bryan Carpenter, and Aamir Shafi. An approach to
buffer management in Java HPC messaging. In Proceedings of the 6th
International Conference on Computational Science, pages 953–960,
2006.

[BDFL96] Matthias A. Blumrich, Cezary Dubnicki, Edward W. Felten, and Kai
Li. Protected, user-level DMA for the SHRIMP network interface. In
Proceedings of the 2nd IEEE Symposium on High-Performance Com-
puter Architecture, pages 154–165, 1996.

[BGH+92] Thomas F. Bowen, Gita Gopal, Gary Herman, Takako Hickey, Kuo C.
Lee, William H. Mansfield, John Raitz, and Abel Weinrib. The dat-
acycle architecture. Communications of the ACM, 35:71–81, 1992.

[BGW+81] Philip Bernstein, Nathan Goodman, Eugene Wong, Christopher
Reeve, and James Rothnie. Query processing in a system for dis-
tributed databases (SDD-1). ACM Transactions on Database Systems,
6:602–625, 1981.

[BJM+96] Greg Buzzard, David Jacobson, Milon Mackey, Scott Marovich, and
John Wilkes. An implementation of the hamlyn sender-managed in-
terface architecture. In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation, pages 245–259, 1996.

BIBLIOGRAPHY 205

[BJVP05] Pavan Balaji, Hyun-Wook Jin, Karthikeyan Vaidyanathan, and Dha-
baleswar K. Panda. Supporting iWARP compatibility and features
for regular network adapters. In Proceedings of the 2005 IEEE Inter-
national Conference on Cluster Computing, pages 1–10, 2005.

[Bla96] Trevor Blackwell. Speeding up protocols for small messages. In Pro-
ceedings of the SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 85–
95, 1996.

[BNV+04] Pavan Balaji, Sundeep Narravula, Karthik Vaidyanathan, S Krish-
namoorthy, Jiesheng Wu, and Dhabaleswar K. Panda. Sockets Direct
Protocol over InfiniBand in clusters: Is it beneficial? In Proceedings
of the 2004 IEEE International Symposium on Performance Analysis
of Systems and Software, pages 28–35, 2004.

[BSL07] Brian W. Barrett, Galen M. Shipman, and Andrew Lumsdaine. Anal-
ysis of implementation options for MPI-2 one-sided. In Proceedings of
the 14th European PVM/MPI Users’ Group Conference, 2007.

[BSP04] Pavan Balaji, Hemal V. Shah, and Dhabaleswar K. Panda. Sockets vs
RDMA interface over 10-Gigabit networks: An in-depth analysis of
the memory traffic bottleneck. In Proceedings of the 2004 Workshop
on Remote Direct Memory Access (RDMA): Applications, Implemen-
tations, and Technologies, 2004.

[BSR06] Nathan L. Binkert, Ali G. Saidi, and Steven K. Reinhardt. Integrated
network interfaces for high-bandwidth TCP/IP. In Proceedings of the
12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 315–324, 2006.

[CCC97] Compaq Computer Corp., Intel Corporation, and Microsoft Corpora-
tion. Virtual Interface Architecture Specification, Version 1.0. 1997.

[CER+07] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier. Marker PDU
Aligned Framing for TCP Specification, 2007.

[CGY01] Jeffrey S. Chase, Andrew J. Gallatin, and Kenneth G. Yocum. End-
system optimizations for high-speed TCP. IEEE Communications
Magazine, 39:68–74, 2001.

[CJRS89] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An
analysis of TCP processing overhead. IEEE Communications Maga-
zine, 27:23–29, 1989.

206 BIBLIOGRAPHY

[CLRC+03] Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach,
and Omer Asad. NFS over RDMA. In Proceedings of the ACM
SIGCOMM Workshop on Network-I/O Convergence, pages 196–208,
2003.

[CR02] Don Cameron and Greg J. Regnier. The Virtual Interface Architecture
(First Edition). Intel Press, 2002.

[CvE98] Chi Chang and Thorsten von Eicken. A software architecture for
zero-copy RPC in Java. Technical report, 1998.

[CvE00] Chi-Chao Chang and Thorsten von Eicken. Javia: A Java interface
to the virtual interface architecture. Concurrency - Practice and Ex-
perience, 12:573–593, 2000.

[DAPP93] Peter Druschel, Mark B. Abbott, Michael A. Pagals, and Larry L.
Peterson. Network subsystem design: A case for an integrated data
path. IEEE Network, 7:8–17, 1993.

[Dav90] Bruce S. Davie. Host interface design for experimental, very high-
speed networks. In Proceedings of Compcon Spring 90. Intellectual
Leverage. Digest of Papers. Thirty-Fifth IEEE Computer Society In-
ternational Conference., pages 102–106, 1990.

[Dav91] Bruce S. Davie. A host-network interface architecture for ATM. ACM
SIGCOMM Computer Communication Review, 21:307–315, 1991.

[DDF+09] Nicolas Dieu, Adrian Dragusanu, Francoise Fabret, Francois Llirbat,
and Eric Simon. 1000 tables inside the from. Proceedings of the VLDB
Endowment, pages 1450–1461, 2009.

[DDW05] Dennis Dalessandro, Ananth Devulapalli, and Pete Wyckoff. Design
and implementation of the iWARP protocol in software. In Proceed-
ings of the IASTED International Conference on Parallel and Dis-
tributed Computing Systems, pages 471–476, 2005.

[DDW07] Dennis Dalessandro, Ananth Devulapalli, and Pete Wyckoff. iSER
storage target for object-based storage devices. In Proceedings of the
4th International Workshop on Storage Network Architecture and Par-
allel I/Os, pages 107–113, 2007.

[DIFL96] Cezary Dubnicki, Liviu Iftode, Edward W. Felten, and Kai Li. Soft-
ware support for virtual memory-mapped communication. In Proceed-
ings of the 10th International Parallel Processing Symposium, pages
372–281, 1996.

BIBLIOGRAPHY 207

[DP93] Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth
cross-domain transfer facility. In Proceedings of the 14th ACM sym-
posium on Operating Systems Principles, pages 189–202, 1993.

[dss] Darwin Streaming Server. http://developer.apple.com/

opensource/server/streaming/.

[DW05] Dennis Dalessandro and Pete Wyckoff. A performance analysis of
the Ammasso RDMA enabled Ethernet adapter and its iWARP API.
In Proceedings of the 2005 IEEE International Conference on Cluster
Computing, pages 1–7, 2005.

[DW07a] Dennis Dalessandro and Pete Wyckoff. Accelerating web protocols us-
ing RDMA. In Proceedings of the 6th IEEE International Symposium
on Network Computing and Applications, pages 205–212, 2007.

[DW07b] Dennis Dalessandro and Pete Wyckoff. Memory management strate-
gies for data serving with RDMA. In Proceedings of the 15th Annual
IEEE Symposium on High-Performance Interconnects, pages 135–142,
2007.

[DWB+93] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled
Edwards, and John Lumley. Afterburner. IEEE Network, 7:36–43,
1993.

[DWM06] Dennis Dalessandro, Pete Wyckoff, and Gary Montry. Initial perfor-
mance evaluation of the NetEffect 10 Gigabit iWARP adapter. In
Proceedings of the 2006 IEEE International Conference on Cluster
Computing, pages 1–7, 2006.

[EM95] Aled Edwards and Steve Muir. Experiences implementing a high per-
formance TCP in user-space. In Proceedings of the SIGCOMM Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 196–205, 1995.

[FA09] Philip W. Frey and Gustavo Alonso. Minimizing the hidden cost of
RDMA. In Proceedings of the 29th IEEE International Conference on
Distributed Computing Systems, pages 553–560, 2009.

[FBB+05] Wu Chun Feng, Pavan Balaji, C Baron, Laxmi N. Bhuyan, and Dha-
baleswar K. Panda. Performance characterization of a 10-Gigabit
Ethernet TOE. In Proceedings of the 13th Symposium on High-
Performance Interconnects, pages 58–63, 2005.

http://developer.apple.com/opensource/server/streaming/
http://developer.apple.com/opensource/server/streaming/

208 BIBLIOGRAPHY

[FGKT09] Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens Teub-
ner. Spinning relations: High-speed networks for distributed join pro-
cessing. In Proceedings of the 5th International Workshop on Data
Management on New Hardware, pages 27–33, 2009.

[FGKT10] Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens Teub-
ner. A spinning join that does not get dizzy. In Proceedings of the
30th IEEE International Conference on Distributed Computing Sys-
tems, pages –, 2010.

[FHH+03] Annie P. Foong, Thomas R. Huff, Herbert H. Hum, Jaidev P. Patward-
han, and Greg J. Regnier. TCP performance re-visited. In Proceedings
of the 2003 IEEE International Symposium on Performance Analysis
of Systems and Software, pages 70–79, 2003.

[FHMA09] Philip W. Frey, Andreas Hasler, Bernard Metzler, and Gustavo
Alonso. Server-efficient high-definition media dissemination. In Pro-
ceedings of the 19th International Workshop on Network and Operat-
ing System Support for Digital Audio and Video, pages 49–54, 2009.

[FM99] Michail D. Flouris and Evangelos P. Markatos. The network RamDisk:
Using remote memory on heterogeneous NOWs. Cluster Computing,
Special Issue on I/O in Shared-Storage Clusters, 2:281–293, 1999.

[FMN10] Philip W. Frey, Bernard Metzler, and Fredy Neeser. Enabling applica-
tions for RDMA: Distributed compilation revisited. Technical report,
IBM Research RZ3764, January 26, 2010.

[FP93] Kevin Fall and Joseph Pasquale. Exploiting in-kernel data paths to
improve I/O throughput and CPU availability. In Proceedings of the
Winter 1993 USENIX Conference, pages 327–333, 1993.

[FP94] Kevin Fall and Joseph Pasquale. Improving continuous-media play-
back performance with in-kernel data paths. In Proceedings of the
IEEE International Conference on Multimedia Computing and Sys-
tems, pages 100–109, 1994.

[gcc] GCC, the GNU Compiler Collection. http://gcc.gnu.org.

[gen] Gentoo Linux. http://www.gentoo.org.

[Geo] Johann George. A tour of the Linux OpenFabrics stack. https:

//openlab-mu-internal.web.cern.ch/openlab-mu-internal/01_

Events/Event_presentations/2006_OpenFabrics_Workshop/05_

A_Tour_Of_The_OpenFabrics_Stack.pdf.

http://gcc.gnu.org
http://www.gentoo.org
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/01_Events/Event_presentations/2006_OpenFabrics_Workshop/05_A_Tour_Of_The_OpenFabrics_Stack.pdf
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/01_Events/Event_presentations/2006_OpenFabrics_Workshop/05_A_Tour_Of_The_OpenFabrics_Stack.pdf
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/01_Events/Event_presentations/2006_OpenFabrics_Workshop/05_A_Tour_Of_The_OpenFabrics_Stack.pdf
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/01_Events/Event_presentations/2006_OpenFabrics_Workshop/05_A_Tour_Of_The_OpenFabrics_Stack.pdf

BIBLIOGRAPHY 209

[Geo06] Patrick Geoffray. A critique of RDMA. http://www.hpcwire.com/

features/17886984.html, 2006.

[GK10] Romulo Goncalves and Martin Kersten. The Data Cyclotron query
processing scheme, 2010.

[GP03] Brice Goglin and Loic Prylli. Transparent remote file access through
a shared library client. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications,
pages 1131–1137, 2003.

[HCPR] Jeff Hilland, Paul Culley, Jim Pinkerton, and Renato Recio.
RDMA Protocol Verbs Specification, Version 1.0. http://www.

rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.

0-RDMAC.pdf.

[HJ92] Dana S. Henry and Christopher F. Joerg. A tightly-coupled processor-
network interface. ACM SIGPLAN Notices, 27:111–122, 1992.

[HJS+02] Pal Halvorsen, Espen Jorde, Karl-André Skevik, Vera Goebel, and
Thomas Plagemann. Performance tradeoffs for static allocation of
zero-copy buffers. In Proceedings of the 28th Euromicro Conference,
2002.

[HZH+07] Wan Huang, Hongwei Zhang, Jin He, Jizhong Han, and Lisheng
Zhang. Jdib: Java applications interface to unshackle the communi-
cation capabilities of InfiniBand networks. In Proceedings of the 2007
IFIP International Conference on Network and Parallel Computing
Workshops, pages 596–601, 2007.

[ibt] InfiniBand trade association. http://www.infinibandta.org.

[inta] 10 Gigabit Ethernet technology overview. http://www.intel.com/

network/connectivity/resources/doc_library/white_papers/

pro10gbe_lr_sa_wp.pdf.

[intb] Intel 64 and IA-32 architectures software developer’s manual, vol-
ume 1. http://www.intel.com/products/processor/manuals/.

[intc] World Internet stats. http://www.internetworldstats.com/

stats.htm.

[ioa] Accelerating high-speed networking with Intel I/O acceleration
technology (white paper). http://www.intel.com/network/

connectivity/vtc_ioat.htm.

http://www.hpcwire.com/features/17886984.html
http://www.hpcwire.com/features/17886984.html
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.infinibandta.org
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/pro10gbe_lr_sa_wp.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/pro10gbe_lr_sa_wp.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/pro10gbe_lr_sa_wp.pdf
http://www.intel.com/products/processor/manuals/
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.intel.com/network/connectivity/vtc_ioat.htm
http://www.intel.com/network/connectivity/vtc_ioat.htm

210 BIBLIOGRAPHY

[KCH+07] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur, H. Shah, and P. Thaler.
Internet Small Computer System Interface (iSCSI) Extensions for Re-
mote Direct Memory Access (RDMA), 2007.

[Ker08] Martin Kersten. The database architecture jigsaw puzzle. In Proceed-
ing of the 24th IEEE International Conference on Data Engineering,
pages 3–4, 2008.

[kJC96] Hsiao keng Jerry Chu. Zero-copy TCP in Solaris. In Proceedings of
the 1996 USENIX Annual Technical Conference, pages 21–21, 1996.

[KL78] Hsiang T. Kung and Charles E. Leiserson. Systolic arrays (for VLSI).
In Sparse Matrix Proceedings, pages 256–282, 1978.

[KOH+98] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard
Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel
Baxter, Mark A. Horowitz, Ashish Gupta, Mendel Rosenblum, and
John L. Hennessy. The stanford FLASH multiprocessor. In Proceed-
ings of the International Symposium on Computer Architecture, pages
485–496, 1998.

[KP93] Jonathan Kay and Joseph Pasquale. The importance of non-data
touching processing overheads in TCP/IP. In Proceedings of the ACM
SIGCOMM Conference on Communication Architectures, Protocols
and Applications, pages 259–268, 1993.

[KP96] Jonathan Kay and Joseph Pasquale. Profiling and reducing process-
ing overheads in TCP/IP. IEEE/ACM Transactions on Networking,
pages 817–828, 1996.

[KSC09] Changkyu Kim, Eric Sedlar, and Jatin Chhugani. Sort vs. hash re-
visited: Fast join implementation on modern multi-core CPUs. Pro-
ceedings of the VLDB Endowment, pages 1378–1389, 2009.

[LAD+92] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R.
Feynman, Mahesh N. Ganmukhi, Jeffrey V. Hill, Daniel Hillis,
Bradley C. Kuszmaul, Margaret A. St. Pierre, David S. Wells, Mon-
ica C. Wong, Shaw-Wen Yang, and Robert Zak. The network archi-
tecture of the connection machine cm-5. In Proceedings of the 4th
Annual ACM symposium on Parallel Algorithms and Architectures,
pages 272–285, 1992.

BIBLIOGRAPHY 211

[LC95] Lok T. Liu and David E. Culler. Evaluation of the intel paragon on
active message communication. In Proceedings of the Intel Supercom-
puter Users Group Conference, 1995.

[LNS96] Witold Litwin, Marie Neimat, and Donovan Schneider. LH* - a scal-
able, distributed data structure. ACM Transactions on Database Sys-
tems, 21:480–525, 1996.

[LPA09] Jiuxing Liu, Dan Poff, and Bulent Abali. Evaluating high performance
communication: A power perspective. In Proceedings of the 23rd In-
ternational Conference on Supercomputing, pages 326–337, 2009.

[LWK+03] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and
Dhabaleswar K. Panda. High performance RDMA-based MPI imple-
mentation over InfiniBand. In Proceedings of the 17th International
Conference on Supercomputing, pages 295–304, 2003.

[MAF+02] Kostas Magoutis, Salimah Addetia, Alexandra Fedorova, Margo I.
Seltzer, Jeffrey S. Chase, Andrew J. Gallatin, Richard Kisley, Rajiv
Wickremesinghe, and Eran Gabber. Structure and performance of the
direct access file system. In Proceedings of the 2002 USENIX Annual
Technical Conference, pages 1–14, 2002.

[MAFS03] Kostas Magoutis, Salimah Addetia, Ra Fedorova, and Margo I.
Seltzer. Making the most out of direct-access network attached stor-
age. In Proceedings of the 2nd USENIX Conference on File and Stor-
age Technologies, pages 189–202, 2003.

[Mar02] Evangelos P. Markatos. Speeding up TCP/IP: Faster processors are
not enough. In Proceedings of the 21st IEEE International Perfor-
mance Computing and Communications Conference, pages 341–345,
2002.

[MB91] Jeffrey C. Mogul and Anita Borg. The effect of context switches on
cache performance. In Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 75–84, 1991.

[MBK02] Stefan Manegold, Peter Boncz, and Martin Kersten. Optimizing main-
memory join on modern hardware. IEEE Transactions Knowledge and
Data Engineering, 14:709–730, 2002.

212 BIBLIOGRAPHY

[MC99] Alan M. Mainwaring and David E. Culler. Design challenges of virtual
networks: Fast, general-purpose communication. ACM SIGPLAN
Notices, 34:119–130, 1999.

[MKT98] Frank W. Miller, Pete Keleher, and Satish K. Tripathi. General data
streaming. In Proceedings of the 19th IEEE Real-Time Systems Sym-
posium, pages 232–241, 1998.

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation
and performance evaluation for distributed queries. In Proceedings of
the 12th International Conference on Very Large Data Bases, pages
149–159, 1986.

[MNF] Bernard Metzler, Fredy Neeser, and Philip W. Frey. Remote direct
memory access (RDMA) host software. http://www.zurich.ibm.

com/sys/rdma.

[MNF09] Bernard Metzler, Fredy Neeser, and Philip W. Frey. A software
iWARP driver for OpenFabrics. In OpenFabrics Alliance Sonoma
Workshop, 2009.

[Mog03] Jeffrey C. Mogul. TCP offload is a dumb idea whose time has come. In
Proceedings of the 9th conference on Hot Topics in Operating Systems,
pages 5–5, 2003.

[MRB+06] Frank Mietke, Robert Rex, Robert Baumgartl, Torsten Mehlan,
Torsten Hoefler, and Wolfgang Rehm. Analysis of the memory regis-
tration process in the Mellanox InfiniBand software stack. In Proceed-
ings of the 12th International Euro-Par Conference, pages 124–133,
2006.

[MSG04] Kostas Magoutis, Margo Seltzer, and Eran Gabber. The case against
user-level networking. In Third Workshop on Novel Uses of System
Area Networks, 2004.

[MZ08] Aravind Menon and Willy Zwaenepoel. Optimizing TCP receive per-
formance. In Proceedings of the 2008 USENIX Annual Technical Con-
ference, pages 85–98, 2008.

[NBF07] G Narayanaswamy, Pavan Balaji, and Wu Chun Feng. An anal-
ysis of 10-Gigabit Ethernet protocol stacks in multicore environ-
ments. In Proceedings of the 15th Annual IEEE Symposium on High-
Performance Interconnects, pages 109–116, 2007.

http://www.zurich.ibm.com/sys/rdma
http://www.zurich.ibm.com/sys/rdma

BIBLIOGRAPHY 213

[NCTP07] Ranjit Noronha, Lei Chai, Thomas Talpey, and Dhabaleswar K.
Panda. Designing NFS with RDMA for security, performance and
scalability. In Proceedings of the 2007 International Conference on
Parallel Processing, page 49, 2007.

[NGSH05] Sai B. Narasimhamurthy, Prabhanjan C. Gurumohan, Shesha Sreeni-
vasamurthy, and Joseph Y. Hui. Quanta data storage: An information
processing and transportation architecture for storage area networks.
Selected Areas in Communications, IEEE Journal on, 23:2032–2040,
2005.

[NMF10] Fredy Neeser, Bernard Metzler, and Philip W. Frey. SoftRDMA:
Implementing iWARP over TCP kernel sockets. IBM Journal of Re-
search and Development. Special Issue on Network-Optimized Com-
puting, 54:5:1–16, 2010.

[NSL+08] Sundeep Narravula, Hari Subramoni, Ping Lai, Ranjit Noronha, and
Dhabaleswar K. Panda. Performance of HPC middleware over Infini-
Band WAN. In Proceedings of the 37th International Conference on
Parallel Processing, pages 304–311, 2008.

[NTSP02] Jarek Nieplocha, Vinod Tipparaju, Amina Saify, and Dhabaleswar K.
Panda. Protocols and strategies for optimizing performance of remote
memory operations on clusters. In Workshop on Communication Ar-
chitecture for ClustersProceedings, 2002.

[NWD93] Michael D. Noakes, Deborah A. Wallach, and William J. Dally.
The j-machine multicomputer: An architectural evaluation. ACM
SIGARCH Computer Architecture News, 21:224–235, 1993.

[NZ02] Thinh Nguyen and Avideh Zakhor. Distributed video streaming over
Internet. In Proceedings of the ACM/SPIE Conference on Multimedia
Computing and Networking, pages 186–195, 2002.

[ofe] OpenFabrics Enterprise Distribution (OFED). http://www.

openfabrics.org/.

[OHH09] Li Ou, Xubin He, and Jizhong Han. An efficient design for fast mem-
ory registration in RDMA. Journal of Network and Computer Appli-
cations, 32:642–651, 2009.

[opr] OProfile - A System Profiler for Linux. http://oprofile.

sourceforge.net.

http://www.openfabrics.org/
http://www.openfabrics.org/
http://oprofile.sourceforge.net
http://oprofile.sourceforge.net

214 BIBLIOGRAPHY

[Pak08] Scott Pakin. Receiver-initiated message passing over RDMA net-
works. In Proceedings of the 22nd IEEE International Parallel and
Distributed Processing Symposium, pages 1–12, 2008.

[PF01] Ian A. Pratt and Keir Fraser. Arsenic: A user-accessible Gigabit
Ethernet interface. In Proceedings of the 20th INFOCOM Annual
Join Conference of the IEEE Computer and Communication Societies,
pages 67–76, 2001.

[PGHA00] Thomas Plagemann, Vera Goebel, Pal Halvorsen, and Otto Anshus.
Operating system support for multimedia systems. The Computer
Communications Journal, 23:267–289, 2000.

[PMB09] Stavros Passas, Kostas Magoutis, and Angelos Bilas. Towards
100 Gbit/s Ethernet: Multicore-based parallel communication pro-
tocol design. In Proceedings of the 23rd International Conference on
Supercomputing, pages 214–224, 2009.

[Poo04] Martin Pool. distcc, a fast free distributed compiler. In Proceedings
of linux.conf.au, 2004.

[Pos81] J. Postel. Transmission Control Protocol, 1981.

[RA07] Mohammad J. Rashti and Ahmad Afsahi. 10-Gigabit iWARP Ether-
net: Comparative performance analysis with InfiniBand and Myrinet-
10G. In Proceedings of the 24th IEEE International Parallel and Dis-
tributed Processing Symposium, pages 1–8, 2007.

[RAC97] Steven H. Rodrigues, Thomas E. Anderson, and David E. Culler.
High-performance local area communication with fast sockets. In
Proceedings of the 1997 USENIX Annual Technical Conference, pages
257–274, 1997.

[ram] Ramsan-5000. http://www.superssd.com/products/

ramsan-5000/.

[RB03] Allyn Romanow and Stephen Bailey. An overview of RDMA over IP.
In Proceedings of the 1st International Workshop on Protocols for Fast
Long-Distance Networks, 2003.

[Rec03] Renato J. Recio. Server I/O networks past, present, and future. In
Proceedings of the ACM SIGCOMM Workshop on Network-I/O Con-
vergence, pages 163–178, 2003.

http://www.superssd.com/products/ramsan-5000/
http://www.superssd.com/products/ramsan-5000/

BIBLIOGRAPHY 215

[RLW94] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tem-
pest and typhoon: User-level shared memory. In Proceedings the 21st
Annual International Symposium on Computer Architecture, pages
325–336, 1994.

[RMC+07] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A Remote
Direct Memory Access Protocol Specification, 2007.

[RMI+04] Greg J. Regnier, Srihari Makineni, Ramesh Illikkal, Ravi Iyer, Dave
Minturn, Ram Huggahalli, Don Newell, Linda Cline, and Annie
Foong. TCP onloading for data center servers. IEEE Computer,
pages 48–58, 2004.

[RMTB05] A. Romanow, J. Mogul, T. Talpey, and S. Bailey. Remote Direct
Memory Access (RDMA) over IP Problem Statement, 2005.

[Sax] Vik Saxena. Bandwidth drivers for 100 g Ethernet. http://www.

ieee802.org/3/hssg/public/jan07/Saxena_01_0107.pdf.

[SBB+07] Galen M. Shipman, Ron Brightwell, Brian Barrett, Jeffrey M.
Squyres, and Gil Bloch. Investigations on InfiniBand: Efficient net-
work buffer utilization at scale. In Proceedings of the 14th European
PVM/MPI Users’ Group Conference, 2007.

[SBM+05] Sayatan Sur, Uday K. Bondhugula, Amith R. Mamidala, Hyun-Wook
Jin, and Dhabaleswar K. Panda. High performance RDMA based
all-to-all broadcast for InfiniBand clusters. In Proceedings of Interna-
tional Conference on High Performance Computing, 2005.

[SCFJ03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A
transport protocol for real-time applications, 2003.

[SCR+03] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. Network File System (NFS) Version 4
Protocol, 2003.

[SFLG00] Klaus Stuhlmüller, Niko Färber, Michael Link, and Bernd Girod.
Analysis of video transmission over lossy channels. IEEE Journal
on Selected Areas in Communications, 18:1012–1032, 2000.

[SMS+04] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner.
Internet Small Computer Systems Interface (iSCSI), 2004.

http://www.ieee802.org/3/hssg/public/jan07/Saxena_01_0107.pdf
http://www.ieee802.org/3/hssg/public/jan07/Saxena_01_0107.pdf

216 BIBLIOGRAPHY

[Sny90] Peter Snyder. tmpfs: A virtual memory file system. In Proceedings of
the Autumn European UNIX Users Group Conference, pages 241–248,
1990.

[SP00] Jonathan Stone and Craig Partridge. When the CRC and TCP check-
sum disagree. ACM SIGCOMM Computer Communication Review,
30:309–319, 2000.

[SPRC07] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct Data Placement
over Reliable Transports, 2007.

[ST93] Jonathan M. Smith and C. Brendan S. Traw. Giving applications
access to Gb/s networking. IEEE Network, 7:44–52, 1993.

[Ste94] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley Professional, 1994.

[SXM+00] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Tay-
lor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control
Transmission Protocol, 2000.

[Tan02] Andrew S. Tanenbaum. Computer Networks (4th Edition). Prentice
Hall, 2002.

[TG03] Rajeev Thakur and William Gropp. Improving the performance of
collective operations in mpich. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 10th European PVM/MPI
User’s Group Meeting, pages 257–267, 2003.

[The] The Interconnect Software Consortium. Interconnect Transport API
(IT-API) Version 2.1. https://www.opengroup.org/icsc/uploads/
40/9143/IT-API-V2.1.pdf.

[TNML93] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Ed-
ward D. Lazowska. Implementing network protocols at user level.
IEEE/ACM Transactions on Networking, 1:554–565, 1993.

[TOHI98] Hiroshi Tezuka, Francis O’Carroll, Atsushi Hori, and Yutaka Ishikawa.
Pin-down cache: A virtual memory management technique for zero-
copy communication. In Proceedings of the 12th International Parallel
Processing Symposium, pages 308–314, 1998.

[vEBBV95] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vo-
gels. U-Net: A user-level network interface for parallel and distributed

https://www.opengroup.org/icsc/uploads/40/9143/IT-API-V2.1.pdf
https://www.opengroup.org/icsc/uploads/40/9143/IT-API-V2.1.pdf

BIBLIOGRAPHY 217

computing. In Proceedings of the 15th ACM symposium on Operating
Systems Principles, pages 40–53, 1995.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth C. Goldstein, and
Klaus E. Schauser. Active messages: A mechanism for integrated
communication and computation. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, pages 256–266,
1992.

[VG84] Patrick Valduriez and Georges Gardarin. Join and semijoin algo-
rithms for a multiprocessor database machine. ACM Transactions on
Database Systems, 9:133–161, 1984.

[VI96] Subramaniyam R. Viswanathan and Tomasz Imielinski. Metropolitan
area video-on-demand service using pyramid broadcasting. Multime-
dia Systems, 4:197–208, 1996.

[vid] VLC media player. http://www.videolan.org.

[VM03] Jeffrey S. Vetter and Frank Mueller. Communication characteristics
of large-scale scientific applications for contemporary cluster architec-
tures. J. Parallel Distrib. Comput., 63:853–865, 2003.

[WC00] Matt Welsh and David E. Culler. Jaguar: Enabling efficient commu-
nication and I/O in Java. Concurrency - Practice and Experience,
12:519–538, 2000.

[WHZ+01] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya qin Zhang, and
Jon M. Peha. Streaming video over the Internet: Approaches and
directions. IEEE Transactions on Circuits and Systems for Video
Technology, 11:282–300, 2001.

[wir] Wireshark Network Protocol Analyzer. http://www.wireshark.org.

[WM87] Richard W. Watson and Sandy A. Mamrak. Gaining efficiency in
transport services by appropriate design and implementation choices.
ACM Transactions on Computer Systems, 5:97–120, 1987.

[WSBL03] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay
Luthra. Overview of the h.264/avc video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology, 13:560–
576, 2003.

http://www.videolan.org
http://www.wireshark.org

218 BIBLIOGRAPHY

[WSBM06] Tim S. Woodall, Galen M. Shipman, George Bosilca, and Arthur B.
Maccabe. High performance RDMA protocols in HPC. In Proceedings
of the 13th European PVM/MPI Users Group Meeting, pages 76–85,
2006.

[WW05] Pete Wyckoff and Jiesheng Wu. Memory registration caching cor-
rectness. In Proceedings of the 5th IEEE International Symposium on
Cluster Computing and the Grid, pages 1008–1015, 2005.

[ZHH+07] Hongwei Zhang, Wan Huang, Jizhong Hanand, Jin Heand, and
Lisheng Zhang. A performance study of Java communication stacks
over InfiniBand and Giga-bit Ethernet. In Proceedings of the 2007
IFIP International Conference on Network and Parallel Computing
Workshops, pages 602–607, 2007.

Curriculum Vitae

Personal Data

Name Philip Werner Frey
Date of birth January 4, 1981
Citizenship Swiss

Philip Frey is a member of the System Software group in the Systems Department
at IBM Research Zurich. He received an M.S. degree in Computer Science from
the Swiss Federal Institute of Technology (ETH) Zurich in 2006. He subsequently
joined IBM, where he works on host system enablement for Remote Direct Memory
Access (RDMA) in software. Related to the PhD studies he is pursuing at the
Systems Group at ETH Zurich, he works on experimental evaluations for assessing
the RDMA benefits for novel- and legacy distributed applications. He is author
or co-author of various papers and inventor or co-inventor of three filed patent
applications.

Education and Degrees

2006 – 2010 PhD student
Swiss Federal Institute of Technology (ETH)
PreDoc
IBM Research Zurich

2001 – 2006 Master of Science ETH in Computer Science
Swiss Federal Institute of Technology (ETH)

1994 – 2001 Matura Type B (English and Latin)
Kantonsschule Raemibuehl, Zurich

219

Journals, Conferences and Workshops

Fredy Neeser, Bernard Metzler, and Philip W. Frey. SoftRDMA: Imple-
menting iWARP over TCP kernel sockets. IBM Journal of Research and
Development. Special Issue on Network-Optimized Computing, 54:5:1–16,
2010.

Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens Teubner.
A spinning join that does not get dizzy. In Proceedings of the 30th IEEE
International Conference on Distributed Computing Systems, 2010.

Philip W. Frey, Bernard Metzler, and Fredy Neeser. Enabling applications
for RDMA: Distributed compilation revisited. Technical report, IBM Re-
search RZ3764, January 26, 2010.

Bernard Metzler, Philip W. Frey and Animesh Trivedi. Softiwarp - Project
Update. In OpenFabrics Alliance Sonoma Workshop, 2010.

Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens Teubner.
Spinning relations: High-speed networks for distributed join processing.
In Proceedings of the 5th International Workshop on Data Management
on New Hardware, pages 27–33, 2009.

Philip W. Frey and Gustavo Alonso. Minimizing the hidden cost of
RDMA. In Proceedings of the 29th IEEE International Conference on Dis-
tributed Computing Systems, pages 553–560, 2009 (Best-Paper Award).

Philip W. Frey, Andreas Hasler, Bernard Metzler, and Gustavo Alonso.
Server-efficient high-definition media dissemination. In Proceedings of the
19th International Workshop on Network and Operating System Support
for Digital Audio and Video, pages 49–54, 2009.

Bernard Metzler, Fredy Neeser, and Philip W. Frey. A software iWARP
driver for OpenFabrics. In OpenFabrics Alliance Sonoma Workshop, 2009.

	Abstract
	Kurzfassung
	Acknowledgements
	Introduction
	Motivation - Network Communication Revisited
	Problem Statement
	Contributions of this Thesis
	Overview of this Thesis

	I iWARP/RDMA Communication Principles
	RDMA Background
	TCP Sockets
	CPU Overhead
	Memory Bus Traffic
	Context Switches

	Reducing the Communication Overhead
	Offloading the TCP Stack is not Enough
	The RDMA Idea

	Related Work
	TCP/IP Optimizations
	User Level Networking
	The Virtual Interface Architecture
	iWARP/RDMA Applicability

	iWARP: RDMA over Ethernet
	The Protocol Stack
	Protocol Analyzer Extension
	Security Considerations

	Host System Integration
	The OpenFabrics Software Stack
	Softiwarp: iWARP Communication without an RNIC

	Consumer Interfaces
	RDMA Verbs
	OFED API
	iWARP Library
	The File Abstraction - An Alternative Interface

	iWARP in Action
	The ``Hello iWARP'' Application
	Micro Benchmarks

	Summary
	Outlook

	The Hidden Cost of iWARP/RDMA
	Introduction
	Problem Statement
	Contributions
	Chapter Overview

	RDMA Background
	Asynchronous Communication Interface
	RDMA Data Transfer Operations
	Explicit Buffer Management

	iWARP/RDMA Cost Analysis
	RDMA Setup
	Memory Region (De-)Registration
	Memory Copying

	Optimization Strategies
	Respect the Critical Buffer Size
	Overlap Buffer Management with Communication
	Register Buffer on Resident Pages
	Parallel Buffer Registration and Applicability
	Suitability of the Optimizations

	When is iWARP/RDMA beneficial?
	Critical Parameters

	Summary
	Outlook

	II Enabling Applications for iWARP/RDMA
	Distributed Compilation Revisited
	Introduction
	Contributions
	Chapter Overview

	Background
	distcc Overview
	Relevant Aspects of RDMA

	Extending distcc with iWARP/RDMA Capabilities
	How can distcc profit from RDMA?
	RDMA Support in Practice
	Making Files RDMA-accessible
	rdistcc's RDMA Memory Region Management
	Transferring the Files using iWARP
	Connection Management
	Application Protocol for iWARP

	Experimental Evaluation
	Data Residing on Memory versus Hard Disk Drive
	TCP versus RDMA
	Dedicating a Core to RDMA Stack Processing
	Who Would Need an RDMA-enabled NIC?
	Conclusion

	RDMA File Access - Further Considerations
	Related Work
	Summary
	Outlook

	Server-Efficient HD Media Dissemination
	Introduction
	Challenges
	Problem Statement
	Contributions
	Chapter Overview

	Background
	RDMA Benefits
	Prevalent VoD Transports

	Assessment of Current Systems
	Experimental Setup
	RTP-based Systems
	HTTP-based Systems

	Server-Efficient Media Dissemination with iWARP
	iWARP/RDMA-based VoD Protocol
	Protocol Performance Evaluation
	In-Band VCR-like Media Control
	Live Streaming as a Special Case of VoD

	Discussion
	Related Work
	Summary
	Outlook

	The Data Roundabout
	Introduction
	State of the Art
	Problem Statement
	Contributions
	Chapter Overview

	Background
	Processing Large Joins in Distributed Main Memory
	RDMA Benefits for Distributed Databases

	The Data Roundabout Transport
	Considerations for Applying RDMA
	The Data Roundabout Design on RDMA
	Data Roundabout Performance Characteristics

	Join Processing on the Data Roundabout
	Problem Scenario
	The Join Operation
	A Selection of Join Algorithms
	Interacting with the Revolving Join

	Experimental Assessment of the Revolving Joins
	Distributing the Join Evaluation
	Large In-Memory Join
	Sort-Merge Join: Setup Cost vs. Join Cost

	Is RDMA Beneficial At All?
	Data Roundabout Characteristics Summary
	Going Really Large - An Outlook.

	Related Work
	Summary

	Conclusion
	Curriculum Vitae

